- 博客(4)
- 收藏
- 关注
原创 【AI Agent】Clawdbot 通用部署与配置教程(Ubuntu Server / Copilot / Telegram)
本文介绍在 Ubuntu 服务器部署并运行 Clawdbot Gateway 的完整流程:安装基础依赖与 Node(推荐通过 nvm 使用 Node 25),用 npm 安装并初始化 Clawdbot,通过 onboard 选择 GitHub Copilot 模型并接入 Telegram 机器人,随后启动 Gateway 并验证端口监听。
2026-02-01 15:18:11
292
原创 【爬虫】Libvio.link反爬解析
本文分析了Libvio.link网站的结构与爬取策略。该网站无任何反爬措施,适合新手练习。文章详细解析了如何通过BeautifulSoup获取电影列表数据,并演示了下载MP4视频文件的方法。技术实现包括:解析网页结构、提取影片信息、处理视频流下载等。最后强调本文仅供技术交流,反对任何影响服务器正常运行的大规模爬取行为。通过Python代码示例展示了完整的爬取流程,可作为爬虫入门参考。
2026-02-01 00:47:23
394
原创 【NLP入门】TF-IDF 如何衡量“重要词”
TF-IDF算法通过结合词频(TF)和逆文档频率(IDF)来评估词语重要性。TF衡量词语在单个文档中的出现频率,IDF评估词语在整个语料库中的稀有程度。计算时,将词语的TF值与IDF值相乘,同时满足"局部相关+全局区分"的要求。该算法奖励在特定文档中高频出现且在整个语料库中稀有的词语,惩罚常见泛化词。TF-IDF适用于关键词提取、文本检索和传统机器学习特征工程,但不适合处理语义理解、短文本或需要上下文的任务。通过3篇文档的实例演示了TF-IDF的具体计算过程。
2026-01-31 22:13:43
405
原创 【NLP入门】Mean Average Precision(MAP)
摘要:MAP(Mean Average Precision)是评估检索排序质量的核心指标,通过计算多条查询的平均精度来衡量相关结果的排序效果。其计算过程包括:1)计算单条查询的AP(命中相关结果时的精度平均值);2)对多条查询的AP取平均。MAP强调相关结果应靠前排列,适用于二值相关性场景,但不支持多级相关性评估。示例显示,MAP能直观反映模型整体排序性能,是信息检索等领域的重要评价标准。
2026-01-31 17:12:05
331
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅