最近计划再复习一遍数据结构,看到一篇博客:https://www.cnblogs.com/QG-whz/p/5170418.html#_label0。
1、栈(Stack)是一种线性存储结构,它具有如下特点:
(1)栈中的数据元素遵守“先进后出"(First In Last Out)的原则,简称FILO结构。(后进先出的叫法,也是可以的)
(2)限定只能在栈顶进行插入和删除操作。
2、栈的相关概念:
(1)栈顶与栈底:允许元素插入与删除的一端称为栈顶,另一端称为栈底。
(2)压栈:栈的插入操作,叫做进栈,也称压栈、入栈。
(3)弹栈:栈的删除操作,也叫做出栈。
3、栈的常用操作为:
(1)弹栈,通常命名为pop
(2)压栈,通常命名为push
(3)求栈的大小
(4)判断栈是否为空
(5)获取栈顶元素的值
4、栈的常见分类:
(1)基于数组的栈——以数组为底层数据结构时,通常以数组头为栈底,数组头到数组尾为栈顶的生长方向
(2)基于单链表的栈——以链表为底层的数据结构时,以链表头为栈顶,便于节点的插入与删除,压栈产生的新节点将一直出现在链表的头部
5、实例分析
使用标准库的栈时, 应包含相关头文件,在栈中应包含头文件: #include< stack > 。定义:stack< int > s;
s.empty(); //如果栈为空则返回true, 否则返回false;
s.size(); //返回栈中元素的个数
s.top(); //返回栈顶元素, 但不删除该元素
s.pop(); //弹出栈顶元素, 但不返回其值
s.push(); //将元素压入栈顶
(1)基于数组的栈
#include <stack>
#include <iostream>
using namespace std;
int main()
{
stack<int> mystack;
int sum = 0;
for (int i = 0; i <= 10; i++){
mystack.push(i);
}
cout << "size is " << mystack.size() << endl;
while (!mystack.empty()){
cout << " " << mystack.top();
mystack.pop();
}
cout << endl;
system("pause");
return 0;
}
//size is 11
// 10 9 8 7 6 5 4 3 2 1 0
(2)基于单链表的栈
#include <iostream>
using namespace std;
template<class T>class Stack
{
private:
struct Node
{
T data;
Node *next;
};
Node *head;
Node *p;
int length;
public:
Stack()
{
head = NULL;
length = 0;
}
void push(T n)//入栈
{
Node *q = new Node;
q->data = n;
if (head == NULL)
{
q->next = head;
head = q;
p = q;
}
else
{
q->next = p;
p = q;
}
length++;
}
T pop()//出栈并且将出栈的元素返回
{
if (length <= 0)
{
abort();
}
Node *q;
T data;
q = p;
data = p->data;
p = p->next;
delete(q);
length--;
return data;
}
int size()//返回元素个数
{
return length;
}
T top()//返回栈顶元素
{
return p->data;
}
bool isEmpty()//判断栈是不是空的
{
if (length == 0)
{
return true;
}
else
{
return false;
}
}
void clear()//清空栈中的所有元素
{
while (length > 0)
{
pop();
}
}
};
int main()
{
Stack<char> s;
s.push('a');
s.push('b');
s.push('c');
while (!s.isEmpty())
{
cout << s.pop() << endl;
}
system("pause");
return 0;
}
练习1、实现一个特殊的栈,在实现栈的基本功能的基础上,再实现返回栈中最小元素的操作。
解法参考博客:https://blog.csdn.net/cherrydreamsover/article/details/79475925,具体过程如下:
(1)使用两个栈,一个栈用来保存当前的元素,记做:stackData,一个栈用来保存压入操作每一步的最小元素,记做:stackMin。
(2)入栈:当stackData栈中压入一个数据时,判断satckMin中是否为空。若为空,将该元素压入stackMin栈中。若不空,判断两者之间的大小,当前者小于或等于后者时,将前者中的数据压入后者中;当前者大于后者时,
不进行任何操作。
(3)出栈:保证stackMin中栈顶的元素是stackData中最小的。
#include<iostream>
#include <stack>
#include <cassert>
using namespace std;
//方法一: 一个辅助栈,如果这个栈为空,直接将元素入这个栈,如果辅助栈中有元素,将压入的元素和辅助栈顶元素比较,
//压入两者中较小的那个元素使得辅助栈总是维持栈顶元素为最小值。
//class Stack
//{
//public:
// void Push(int data)
// {
// stackData.push(data);
// if (stackMin.empty())
// {
// stackMin.push(data);
// }
// else
// {
// int tmp = stackMin.top();
// int min = data > tmp ? tmp : data;
// stackMin.push(min);
// }
// }
//
// void Pop()
// {
// assert(!stackData.empty() && !stackMin.empty());
// stackData.pop();
// stackMin.pop();
// }
//
// int GetMin()
// {
// assert(!stackMin.empty());
// return stackMin.top();
// }
//
//private:
// stack<int> stackData;
// stack<int> stackMin;
//};
//方法二: 一个辅助栈,如果这个栈为空,直接将元素入这个栈,如果辅助栈中有元素,将压入的元素和辅助栈顶元素比较,
//如果压入的元素小于等于辅助栈顶元素,者将这个元素入辅助栈,否则无操作,出栈的时候判断要出栈的元素是否等于辅助
//栈顶元素,如果是,也将辅助栈顶元素出栈。否则无操作。
class Stack
{
public:
void Push(int data)
{
stackData.push(data);
if (stackMin.empty())
{
stackMin.push(data);
}
else
{
if (data <= stackMin.top())
{
stackMin.push(data);
}
}
}
void Pop()
{
assert(!stackData.empty() && !stackMin.empty());
if (stackData.top() == stackMin.top())
{
stackMin.pop();
}
stackData.pop();
}
int GetMin()
{
assert(!stackMin.empty());
return stackMin.top();
}
private:
stack<int> stackData;
stack<int> stackMin;
};
int main()
{
Stack s;
//s.Push(5);
s.Push(36);
s.Push(15);
s.Push(95);
s.Push(50);
s.Push(53);
cout << s.GetMin() << endl;
system("pause");
return 0;
}//15
(3)栈的应用举例
1)进制转换
2)括号匹配的检验
3)行编辑程序
4)迷宫求解、汉诺塔等经典问题
5)表达式求值
6)栈与递归的实现
练习2、剑指offer面试题30——包含min函数的栈
题目描述
定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数。
class Solution {
public:
stack<int> stackData;//保存数据用的栈stackData
stack<int> stackMin;//保存最小的数的栈stackMin,其中它的栈顶始终为最小的数
void push(int value) {
stackData.push(value);
if(stackMin.empty())
stackMin.push(value);//如果stackMin为空,则value是最小的值,入栈
else{
if(stackMin.top()>=value)
stackMin.push(value);//否则当value小于等于stackMin的栈顶元素时,入栈(等于的时候也入栈是因为我考虑有相同的数)
}
}
void pop() {
if(stackData.top()==stackMin.top())//如果出栈的数刚好是最小的数,那么stackMin也应该出栈
stackMin.pop();
stackData.pop();
}
int top() {
return stackData.top();//栈顶元素应返回stackData的栈顶元素
}
int min() {
return stackMin.top();//stackMin的栈顶元素即是最小的数
}
};
运行结果:
练习3、剑指offer面试题31——栈的压入、弹出序列
参考博客:https://blog.csdn.net/budf01/article/details/76232497,解题思路为:创建一个栈进行压入、弹出操作。具体操作如下:
(1)当栈为空或者栈顶元素和popV当前元素不相等时,将pushV当前元素压入;
(2)当栈顶元素与popV当前元素相等时,将栈顶元素弹出,并移至popV下一个元素;
(3)如果需要压入的元素个数大于pushV的元素个数,说明popV不可能是pushV的弹出序列。
代码为:
class Solution {
public:
bool IsPopOrder(vector<int> pushV,vector<int> popV) {
//特殊输入测试
if(pushV.empty() || popV.empty() || pushV.size()!=popV.size())
return false;
stack<int> mystack;//定义一个辅助栈
int index=0;
for(int i=0;i<popV.size();i++){
//当辅助栈为空或者栈顶元素和popV当前元素不相等时,将pushV当前元素压入
while(mystack.empty()||mystack.top()!=popV[i]){
if(index>=pushV.size())
//如果需要压入的元素个数大于pushV的元素个数,说明popV不可能是pushV的弹出序列
return false;
mystack.push(pushV[index++]);
}
//当栈顶元素与popV当前元素相等时,将栈顶元素弹出,并移至popV下一个元素
if(mystack.top()==popV[i])
mystack.pop();
}
return true;
}
};
运行结果:
当然可以利用其他思想解决,如引入哈希或直接利用向量的方式求解。
class Solution {
public:
bool IsPopOrder(vector<int> pushV,vector<int> popV) {
if(pushV.empty() && popV.empty() && pushV.size() != popV.size()){
return false;
}
map<int,int> Hash; //用map做一个映射,入栈顺序的值不一定是递增
for(int i=0;i<pushV.size();i++){
Hash[pushV[i]]=i+1;
}
int now=Hash[popV[0]]; //当前最靠后入栈的键值,例如题目给的4 3 5 1 2,now先等于4,再等于5
for(int i=0;i<popV.size();i++){
//如果入栈序列中没有这个值
if(Hash[popV[i]]==0){
return false;
}
if(Hash[popV[i]]>=now){
now=Hash[popV[i]];
}
else if(Hash[popV[i]]<=Hash[popV[i-1]]){
continue ;
}
else{
return false;
}
}
return true;
}
};
练习4、简单的括号匹配判断
例如,爱奇艺的一道实习在线编程题:当输入为()(())(),返回true;当输入为)()()()()),返回false,时间15min。(不能使用栈)
1、假设可以使用栈(15min可以完成)
C++代码:
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
bool isRight(vector<char> &vec){
stack<char> stack1;
bool index = false;
if (vec.size() <= 1 || vec[0]!='(' || vec.size()%2!=0){
return index;
}
for (int i = 0; i < vec.size(); i++){
if (vec[i] == '(')
stack1.push(vec[i]);
else if (vec[i] == ')')
stack1.pop();
}
if (stack1.empty())
index = true;
return index;
}
int main(){
//输入不定长的括号
vector<char> vec;
char tmpCh;
char t;
cout << "输入一串括号为:";
do{
cin >> tmpCh;
vec.push_back(tmpCh);
} while ((t = cin.get()) != '\n');
//调用isRight函数
bool myRes = isRight(vec);
cout << myRes << endl;
system("pause");
return 0;
}
运行结果:
python代码:
def isRight(str1):
index = False
tmp = []
if(len(str1)>=2 and len(str1)%2==0 and str1[0]=='('):
for id in range(len(str1)):
if str1[id] == '(':
tmp.append(str1[id])
else:
tmp.pop()
if len(tmp)==0:
index = True
return index
if __name__ == "__main__":
try:
while True:
str1 = [i for i in input().split()]
print(isRight(str1)) # 返回判断结果
except:
pass
运行结果:
2、不能使用栈(15min,不太好想,mad,笔试那会儿就没想到!)
以下是我的想法,具体的过程如下:
(1)由于不能使用栈,将左括号定义为数值1,右括号定义为数值-1,存放到向量id(C++)或列表tmp (Python)中;
(2)初始化变量sum,用于判断总的求和结果是否等于0,若不等于0,则肯定不正确,若等于0,不一定正确;
(3)循环遍历输入的括号向量vec,判断当前括号属性的同时,进行累加求和,如果求和值小于等于-1,break(跳出循环);
(4)最后再检查sum是否等于0,此时若等于0,则为正确。
C++代码:
#include <iostream>
#include <vector>
using namespace std;
bool isRight(vector<char> &vec){
vector<int> id(vec.size()); //用于存放左右括号的属性:左括号用1表示,右括号用-1表示
int sum = 0;
bool index = false;
if (vec.size() <= 1 || vec[0]!='(' || vec.size()%2!=0){
return index;
}
for (int i = 0; i < vec.size(); i++){
if (vec[i] == '('){
id.push_back(1);
sum = id[i] + sum;
}
else if (vec[i] == ')'){
id.push_back(-1);
sum = id[i] + sum;
if (sum <= -1)
break;
}
}
if (sum == 0)
index = true;
return index;
}
int main(){
//输入不定长的括号
vector<char> vec;
char tmpCh;
char t;
cout << "输入一串括号为:";
do{
cin >> tmpCh;
vec.push_back(tmpCh);
} while ((t = cin.get()) != '\n');
//调用isRight函数
bool myRes = isRight(vec);
cout << myRes << endl;
system("pause");
return 0;
}
运行结果同上
python代码:
def isRight(str1):
index = False
sum = 0
tmp = []
if(len(str1)>=2 and len(str1)%2==0 and str1[0]=='('):
for id in range(len(str1)):
if str1[id] == '(':
tmp.append(1)
sum += tmp[id]
else:
tmp.append(-1)
sum += tmp[id]
if sum<=-1:
break
if sum == 0:
index = True
return index
if __name__ == "__main__":
try:
while True:
str1 = [i for i in input().split()]
print(isRight(str1)) # 返回判断结果
except:
pass
运行结果同上。