pytorch读取.pth文件

本文详细介绍了PyTorch中.pth文件的结构,它通过有序字典保存模型参数,每个元素为Parameter类型。讲解了torch.save()和torch.load()的用法,以及如何加载预训练模型的部分参数。在恢复训练或测试时,可以加载state_dict和optimizer的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.pth文件中保存的是什么

import torch
state_dict = torch.load("resnet18.pth")
print(type(state_dict))

---------------
<class 'collections.OrderedDict'>

如上打印输出所示,pth文件通过有序字典来保持模型参数。有序字典与常规字典一样,但是在排序操作方面有一些额外的功能。常规的dict是无序的,OrderedDict能够比dict更好地处理频繁的重新排序操作。
OrderedDict有一个方法popitem(last=True)用于有序字典的popitem()方法返回并删除一个(键,值)对。如果last为真,则按LIFO顺序返回对;如果为假,则按FIFO顺序返回对。
OrderedDict还有一个方法move_to_end(key,last=True),将现有的键移动到有序字典的两端。如果last为真,则将项目移动到右端(默认);如果last为假,则移动到开头。

import torch
state_dict = torch.load("resnet18.pth")
print(type(state_dict))

for i in state_dict:
    print(i)
    print(type(state_dict[i]))
    print("aa:",state_dict[i].data.size())
    print("bb:",state_dict[i].requires_grad)
    break

------------------------------
<class 'collections.OrderedDict'>
conv1.weight
<class 'torch.nn.parameter.Parameter'>
aa: torch.Size([64, 3, 7, 7])
bb: True

如上打印所示,有序字典state_dict中每个元素都是Parameter参数,该参数是一种特殊的张量,包含data和requires_grad两个方法。其中data字段保存的是模型参数,requires_grad字段表示当前参数是否需要进行反向传播。

更多参考:https://www.jb51.net/article/168000.htm

2.torch.save()

先建立一个字典,保存三个参数:调用torch.save(),即可保存对应的pth文件。需要注意的是若模型是由nn.Moudle类继承的模型,保存pth文件时,state_dict参数需要由model.state_dict指定。

state_dict = {‘net':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state_dict , dir)

--------------------------------
torch.save(model.state_dict,dir)

3.torch.load()

当你想恢复某一阶段的训练(或者进行测试)时,那么就可以读取之前保存的网络模型参数等。

checkpoint = torch.load(dir)
model.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1

pytorch加载预训练模型部分参数

resnet = models.resnet50(pretrained=True)
new_state_dict = resnet.state_dict()
dd = net.state_dict()  #net是自己定义的含有resnet backbone的模型
for k in new_state_dict.keys():
    print(k)
    if k in dd.keys() and not k.startswith('fc'):  #不使用全连接的参数
        print('yes')
        dd[k] = new_state_dict[k]
net.load_state_dict(dd)

更加全面参考:https://blog.csdn.net/weixin_41519463/article/details/103205665

<think>好的,用户的问题是如何在PyTorch中加载.h5格式的模型权重。首先,我需要回忆一下相关技术细节。H5文件通常是使用Keras或TensorFlow保存的模型权重格式,而PyTorch默认使用的是自己的.pth格式。因此,直接加载可能需要一些转换步骤。 首先,用户可能需要先将H5文件中的权重转换为PyTorch能识别的格式。这涉及到使用像h5py这样的库来读取H5文件,提取各层的权重和偏置,然后将这些参数加载到对应的PyTorch模型中。需要注意层名称的匹配,以及参数形状是否一致,因为不同框架可能有不同的数据排布方式,例如卷积层的权重形状可能不同。 接下来,用户可能需要安装必要的库,比如h5py来读取H5文件,以及确保TensorFlow/Keras已安装以便于可能的模型结构定义。如果用户已经有预训练的Keras模型,可能需要先按照相同的结构在PyTorch中定义模型,这样才能正确加载权重。 然后,我需要考虑可能的错误点,例如层名不匹配、参数形状不一致或者数据类型的问题。例如,Keras中的卷积层权重形状可能是(高度,宽度,输入通道,输出通道),而PyTorch通常是(输出通道,输入通道,高度,宽度),这会导致直接加载失败,需要转置处理。 另外,用户可能没有现成的模型结构,这时候可能需要参考原始Keras模型的架构来在PyTorch中复现,确保每一层的类型和配置一致。此外,加载权重时可能需要逐层处理,特别是对于有自定义层的情况,需要特别处理。 还需要提醒用户注意是否需要转换某些层的参数,例如Batch Normalization层的参数顺序是否一致。同时,验证加载后的模型是否正确,可以通过比较输出结果或者检查参数值是否正确。 最后,应该给出具体的步骤示例,包括如何读取H5文件,提取参数,转换并加载到PyTorch模型中。可能还需要提到使用torch.nn.Module的load_state_dict方法,以及如何处理可能的键名不匹配问题,比如修改键名以匹配PyTorch的命名约定。 总结下来,步骤大致是:安装必要库、读取H5文件、构建对应的PyTorch模型结构、转换并加载参数、验证正确性。同时需要提醒用户注意层匹配和参数形状的问题,以及如何处理这些常见错误。</think>在PyTorch中加载Keras的.h5格式模型权重需要以下步骤: ### 步骤1:安装必要库 ```bash pip install h5py tensorflow ``` ### 步骤2:读取.h5文件并提取参数 ```python import h5py def load_keras_weights(path): with h5py.File(path, 'r') as f: layer_names = [n.decode('utf8') for n in f['model_weights'].attrs['layer_names']] weights = {} for name in layer_names: layer = f[f'model_weights/{name}'] weight_names = [n.decode('utf8') for n in layer.attrs['weight_names']] weights[name] = [layer[wn][:] for wn in weight_names] return weights ``` ### 步骤3:构建PyTorch模型 ```python import torch.nn as nn class MyPyTorchModel(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3) self.bn1 = nn.BatchNorm2d(64) # 必须与原始Keras模型结构完全对应[^2] ``` ### 步骤4:参数转换与加载 ```python def transfer_weights(pytorch_model, keras_weights): state_dict = {} for name, param in keras_weights.items(): # 示例:处理卷积层权重转置 if 'conv' in name: kernel = torch.from_numpy(param[0]).permute(3, 2, 0, 1) bias = torch.from_numpy(param[1]) state_dict[name+'.weight'] = kernel state_dict[name+'.bias'] = bias # 处理BN层参数[^3] elif 'batch_normalization' in name: gamma = torch.from_numpy(param[0]) beta = torch.from_numpy(param[1]) mean = torch.from_numpy(param[2]) var = torch.from_numpy(param[3]) state_dict[name+'.weight'] = gamma state_dict[name+'.bias'] = beta state_dict[name+'.running_mean'] = mean state_dict[name+'.running_var'] = var pytorch_model.load_state_dict(state_dict) ``` ### 注意事项 1. 层名称需要严格对应 2. 参数形状可能需要转置(特别是卷积层) 3. BatchNorm层参数顺序不同(Keras: gamma, beta, mean, var;PyTorch: weight, bias, running_mean, running_var)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值