I - Restaurant
A restaurant received n orders for the rental. Each rental order reserve the restaurant for a continuous period of time, the i-th order is characterized by two time values — the start time li and the finish time ri (li ≤ ri).
Restaurant management can accept and reject orders. What is the maximal number of orders the restaurant can accept?
No two accepted orders can intersect, i.e. they can't share even a moment of time. If one order ends in the moment other starts, they can't be accepted both.
Input
The first line contains integer number n (1 ≤ n ≤ 5·105) — number of orders. The following n lines contain integer values li and ri each (1 ≤ li ≤ ri ≤ 109).
Output
Print the maximal number of orders that can be accepted.
Example
2 7 11 4 7
1
5 1 2 2 3 3 4 4 5 5 6
3
6 4 8 1 5 4 7 2 5 1 3 6 8
2
#include<stdio.h>
#include<algorithm>
using namespace std;
struct Fuck
{
int sta;
int end;
}a[500000+10];
bool cao(Fuck a,Fuck b)
{
if(a.end == b.end )
return a.sta > b.sta;
else
return a.end < b.end;
}
int main()
{
int n;
while( ~scanf("%d",&n) )
{
for(int i=0;i<n;i++)
scanf("%d %d",&a[i].sta,&a[i].end);
sort(a,a+n,cao);
int t=a[0].end,sum=1;
for(int i=0;i<n;i++)
{
if(a[i].sta>t)
{
sum++;
t=a[i].end;
}
}
printf("%d\n",sum);
}
return 0;
}