Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 29613 | Accepted: 11750 |
Description
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
Output
Sample Input
4 0 4 9 21 4 0 8 17 9 8 0 16 21 17 16 0
Sample Output
28
题意:
给你N*N矩阵,表示N个村庄之间的距离。FJ要把N个村庄全都连接起来,求连接的最短距离。(即传说中的最小生成树)
样例分析:
连接方式:1-----------2-----------3----------4
距离: 4 + 8 + 16 = 24
算法:
图论之最小生成树问题。。。下面的是Prime算法复杂度O(n*n)
最小生成树算法思想:
假设N=(V,E) 是连通网,TE是N上最小生成树中边的集合,算法从U={vk},TE={ }开始(即从vk出发求最小生成树,vk∈V)。
重复执行下述操作:
在所有的边(vi,vj)∈E (vi∈U,vj∈V-U)中寻找一条权值最小的边(vi,vj)将其添加到TE中(或打印之),同时把vj添 加到集合U 中 。
反复执行上述操作n-1次(或所有顶点全部加入U时为止)。
通俗的说:1、有一个图N=(V,E),设置一个空集合U,设置路长ans=0。
2、就是先找一个点v1,将v1添加到集合U,再找出和它距离最近的点v2,再把v2添加到集合U,ans加上两点间的距离。
3、再到点集合V-U (属于V,但是不属于U的点)中找出一个离集合U最近的点。将找到的点添加到集合U,ans加上这个最短的距离。
4、如此循环第三步,直到所有的点全到U中。
#include <cstdio>
#include <cstring>
const int Max=0x3f3f3f3f;
const int maxn=100+10;
int map[maxn][maxn],low[maxn],visit[maxn];
int n;
int prim()
{
int pos,i,j,min,sum=0;
memset(visit,0,sizeof(visit));//初始化visit数组
visit[1]=1; //从第一个点开始
pos=1; //标记和记录这个点
for(i=1;i<=n;i++)
low[i]=map[pos][i]; //用low数组记录权值
for(i=1;i<n;i++) //第一个点已经进行了,还需要进行n-1次;
{
min=Max; //把min赋初值
for(j=1;j<=n;j++)
{
if(visit[j]==0 && low[j]!=0 && low[j]<min) //比较权值的大小
{
min=low[j];
pos=j; //记录权值最小的点,下一次从这个点开始
}
}
sum+=min; //记录权值的和
visit[pos]=1; //标记访问
for(j=1;j<=n;j++) //访问下一个点
{
if(visit[j]==0 && low[j]>map[pos][j])
low[j]=map[pos][j];
}
}
return sum;
}
int main()
{
int sum,i,j;
while(scanf("%d",&n)!=EOF)
{
sum=0;
memset(map,Max,sizeof(map));
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&map[i][j]);
sum=prim();
printf("%d\n",sum);
}
return 0;
}