题目描述
约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别 上鲜花,她们要表演圆舞.
只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.
为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.
对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的圆舞是不成功的.
如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.
给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?
输入输出样例
输入样例#1:
5 4
2 4
3 5
1 2
4 1
输出样例#1:
1
【解题思路】:
首先,一次dfs会且只会找出一个强连通分量,而它的大小就是这次dfs最大的pre[x]-low[x]+1,此题判断大于1,即为pre[x]不等于low[x]。
【AC代码】:
#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define pi 3.1415926
using namespace std;
const int N=10001,M=50001;
int pre[N],low[N],fi[N],nscc[N],isc[N],ne[M],b[M],clk,n,m,x,y,ans;
bool ri;
void dfs(int x){
pre[x]=low[x]=++clk;
for (int j=fi[x],y=b[j]; j; j=ne[j],y=b[j])
{
if (!pre[y]) dfs(y);
if (!isc[y]) low[x]=min(low[x],low[y]);
}
if (pre[x]!=low[x]) ri=1;
}
int main(){
scanf("%d%d",&n,&m);
while (m){
scanf("%d%d",&x,&y);
b[m]=y;
ne[m]=fi[x];
fi[x]=m--;
}
for (int i=1; i<=n; i++)
if (!pre[i]){
ri=0;
dfs(i);
if (ri) ++ans;
}
printf("%d",ans);
}