P2420 让我们异或吧

题目描述

异或是一种神奇的运算,大部分人把它总结成不进位加法.

在生活中…xor运算也很常见。比如,对于一个问题的回答,是为1,否为0.那么:

(A是否是男生 )xor( B是否是男生)=A和B是否能够成为情侣

好了,现在我们来制造和处理一些复杂的情况。比如我们将给出一颗树,它很高兴自己有N个结点。树的每条边上有一个权值。我们要进行M次询问,对于每次询问,我们想知道某两点之间的路径上所有边权的异或值。

输入输出格式

输入格式:

输入文件第一行包含一个整数N,表示这颗开心的树拥有的结点数,以下有N-1行,描述这些边,每行有3个数,u,v,w,表示u和v之间有一条权值为w的边。接下来一行有一个整数M,表示询问数。之后的M行,每行两个数u,v,表示询问这两个点之间的路径上的权值异或值。

输出格式:

输出M行,每行一个整数,表示异或值

输入输出样例

输入样例#1:

5
1 4 9644
2 5 15004
3 1 14635
5 3 9684
3
2 4
5 4
1 1

输出样例#1:

975
14675
0

说明

对于40%的数据,有1 ≤ N,M ≤ 3000;

对于100%的数据,有1 ≤ N ,M≤ 100000。

【解题思路】

先dfs 求根到每个点的异或值dis[i];

再找lca(x,y),为z

x到z的异或值为dis[x]^dis[z]

y到z的异或值为dis[y]^dis[z]

再把这两个异或起来即可

【AC代码】:

#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define MOD 1000000009
using namespace std;
inline void read(int &y){
    char GQY=getchar(),GQ=GQY;
	y=0;
    while(GQY<'0' || GQY>'9'){
    	 GQ=GQY;
		 GQY=getchar();
	}
    while(GQ>='0' && GQY<='9'){
    	y=(y<<1)+(y<<3)+GQY-'0';
		GQY=getchar();
	}
    if(GQ=='-')y=-y;
}

const int maxn=100005;

int head[maxn],dis[maxn],deep[maxn],cnt=0;

struct Node{
	int v,to,next;
}edge[maxn];

void add(int u,int v,int w){
	head[++cnt]=u;
	edge[cnt].to=v;
	edge[cnt].v=v;
	edge[cnt].next=head[u];
}

int N,M,i,j;
int p[maxn][maxn];

void dfs(int now,int val) {
    dis[now]=val;
    for(int i=head[now]; i!=-1; i=edge[i].next) {
        int go=edge[i].to;
        if(deep[go]==0) {
            deep[go]=deep[now]+1;
            p[go][0]=now;
            dfs(go,val^edge[i].v);
        }
    }
}
int LCA(int a,int b) {
    if(deep[a]<deep[b])
        swap(a,b);
    int i;
    for(i=0; (1<<i)<=deep[a]; i++);
    i--;
    for(int j=i; j>=0; j--)
        if(deep[a]-(1<<j)>=deep[b])
            a=p[a][j];
    if(a==b) return a;
    for(int j=i; j>=0; j--)
        if(p[a][j]!=0&&p[a][j]!=p[b][j])
            a=p[a][j],b=p[b][j];
    return p[a][0];
}

int main(){
	M(head,-1);
	M(p,0);
	M(deep,0);
	read(N);
	int u,v,w,find;
	for(i=1;i<N;i++){
		read(u),read(v),read(w);
		add(u,v,w);
		add(v,u,w); 
	}
	deep[1]=1;
	dfs(1,0);
	 for(int j=1; (1<<j)<=N; j++)
        for(i=1;i<=N;i++)
        if(p[i][j-1]!=0)
            p[i][j]=p[p[i][j-1]][j-1];
	read(M);
	for(i=1;i<=M;i++){
		read(u),read(v);
		find=0;
		find=LCA(u,v);
		printf("%d\n",(dis[u]^dis[find])^(dis[find]^dis[v]));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值