题目描述
异或是一种神奇的运算,大部分人把它总结成不进位加法.
在生活中…xor运算也很常见。比如,对于一个问题的回答,是为1,否为0.那么:
(A是否是男生 )xor( B是否是男生)=A和B是否能够成为情侣
好了,现在我们来制造和处理一些复杂的情况。比如我们将给出一颗树,它很高兴自己有N个结点。树的每条边上有一个权值。我们要进行M次询问,对于每次询问,我们想知道某两点之间的路径上所有边权的异或值。
输入输出格式
输入格式:
输入文件第一行包含一个整数N,表示这颗开心的树拥有的结点数,以下有N-1行,描述这些边,每行有3个数,u,v,w,表示u和v之间有一条权值为w的边。接下来一行有一个整数M,表示询问数。之后的M行,每行两个数u,v,表示询问这两个点之间的路径上的权值异或值。
输出格式:
输出M行,每行一个整数,表示异或值
输入输出样例
输入样例#1:
5
1 4 9644
2 5 15004
3 1 14635
5 3 9684
3
2 4
5 4
1 1
输出样例#1:
975
14675
0
说明
对于40%的数据,有1 ≤ N,M ≤ 3000;
对于100%的数据,有1 ≤ N ,M≤ 100000。
【解题思路】
先dfs 求根到每个点的异或值dis[i];
再找lca(x,y),为z
x到z的异或值为dis[x]^dis[z]
y到z的异或值为dis[y]^dis[z]
再把这两个异或起来即可
【AC代码】:
#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define MOD 1000000009
using namespace std;
inline void read(int &y){
char GQY=getchar(),GQ=GQY;
y=0;
while(GQY<'0' || GQY>'9'){
GQ=GQY;
GQY=getchar();
}
while(GQ>='0' && GQY<='9'){
y=(y<<1)+(y<<3)+GQY-'0';
GQY=getchar();
}
if(GQ=='-')y=-y;
}
const int maxn=100005;
int head[maxn],dis[maxn],deep[maxn],cnt=0;
struct Node{
int v,to,next;
}edge[maxn];
void add(int u,int v,int w){
head[++cnt]=u;
edge[cnt].to=v;
edge[cnt].v=v;
edge[cnt].next=head[u];
}
int N,M,i,j;
int p[maxn][maxn];
void dfs(int now,int val) {
dis[now]=val;
for(int i=head[now]; i!=-1; i=edge[i].next) {
int go=edge[i].to;
if(deep[go]==0) {
deep[go]=deep[now]+1;
p[go][0]=now;
dfs(go,val^edge[i].v);
}
}
}
int LCA(int a,int b) {
if(deep[a]<deep[b])
swap(a,b);
int i;
for(i=0; (1<<i)<=deep[a]; i++);
i--;
for(int j=i; j>=0; j--)
if(deep[a]-(1<<j)>=deep[b])
a=p[a][j];
if(a==b) return a;
for(int j=i; j>=0; j--)
if(p[a][j]!=0&&p[a][j]!=p[b][j])
a=p[a][j],b=p[b][j];
return p[a][0];
}
int main(){
M(head,-1);
M(p,0);
M(deep,0);
read(N);
int u,v,w,find;
for(i=1;i<N;i++){
read(u),read(v),read(w);
add(u,v,w);
add(v,u,w);
}
deep[1]=1;
dfs(1,0);
for(int j=1; (1<<j)<=N; j++)
for(i=1;i<=N;i++)
if(p[i][j-1]!=0)
p[i][j]=p[p[i][j-1]][j-1];
read(M);
for(i=1;i<=M;i++){
read(u),read(v);
find=0;
find=LCA(u,v);
printf("%d\n",(dis[u]^dis[find])^(dis[find]^dis[v]));
}
return 0;
}