题目描述
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
输入输出样例
输入 #1
5
1
3
1
5
2
输出 #1
43
【解题思路】:
区间dp超级简单题,不说了
【AC代码】:
#include <bits/stdc++.h>
#define M(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f
#define MOD 10000007
using namespace std;
inline void read(int &x){
char ch=getchar(),c=ch;
x=0;
while(ch<'0' || ch>'9'){
c=ch;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
if(c=='-')x=-x;
}
int n,sum[2005],dp[2005][2005];
int i,len;
int main(){
read(n);
for(i=1; i<=n; i++){
read(dp[i][i]);
sum[i]=sum[i-1]+dp[i][i];
}
for(len=1; len<=n; len++)
for(i=1; i+len<=n; i++)
dp[i][i+len]=max(dp[i][i]+dp[i+1][i+len]+(sum[i+len]-sum[i]),dp[i+len][i+len]+dp[i][i+len-1]+(sum[i+len-1]-sum[i-1]));
printf("%d\n",dp[1][n]);
return 0;
}