Spark RDD的缓存
- Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或者缓存数据集。当持久化某个RDD后,每一个节点都将把计算分区结果保存在内存中,对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。
- Spark RDD 是惰性求值的,而有时我们希望能多次使用同一个RDD。如果简单地对RDD 调用行动操作,Spark 每次都会重算RDD 以及它的所有依赖。这在迭代算法中消耗格外大,因为迭代算法常常会多次使用同一组数据。
var input = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7))
val result = input.map(x => x*x)
println(result.count())//7
println(result.collect().mkString(","))//1,4,9,16,25,36,49
- 为了避免多次计算同一个RDD,可以让Spark 对数据进行持久化。当我们让Spark 持久化存储一个RDD 时,计算出RDD 的节点会分别保存它们所求出的分区数据。如果一个有持久化数据的节点发生故障,Spark 会在需要用到缓存的数据时重算丢失的数据分区。如果希望节点故障的情况不会拖累我们的执行速度,也可以把数据备份到多个节点上。
- 出于不同的目的,我们可以为RDD 选择不同的持久化级别。在Scala,默认情况下persist() 会把数据以序列化的形式缓存在JVM 的堆空间中。在Python 中,我们会始终序列化要持久化存储的数据,所以持久化级别默认值就是以序列化后的对象存储在JVM 堆空间中。当我们把数据写到磁盘或者堆外存储上时,也总是使用序列化后的数据。
RDD缓存方式
缓存级别 |
userDisk 是否使用磁盘 |
useMemory 是否使用内存 |
useOffHeap 是否使用堆外内存 |
deserialized 是否反序列化 |
replication 副本数 |
NONE |