- 博客(19)
- 收藏
- 关注
原创 PaddleOCR中如何求两个文件的差集
这种情况就是最终识别的结果要比已有的数据要少,就是有些数据因为一些原因没有标记到检测框,首先,如果数据量小的话,还是可以一张一张地去核对,但是如果数据量是比较大的,尤其是上万的,那么这个时候就需要用代码操作来直接找出哪些数据是被遗漏的,再重新做处理。1.一个存放所有未处理数据的集合,能够很清晰地看到集合中每张照片的名字,便于之后的数据再核对和处理。一个是总数据的路径(Image),一个是识别结果存放的路径(output)希望我写的文章能够让你们得到价值有所收获。2.未处理照片的数量。感谢大家的关注和支持。.
2022-07-28 14:05:19
410
原创 如何替换PaddleOCR中的Label.txt文件中识别错的身份证号码
先找到PaddleOCR检测和识别后的结果文件(Label.txt),还有一份正确无误的身份证照片名字和身份证号码对应的文档(rec_shangye.txt),还有替换后的正确的结果文件(Label2.txt)3.路径4.创建保存rec_shangye.txt中每行文本内容的列表5.创建姓名和身份证号码的列表,并把rec_list中的内容添加进去6.把名称列表和号码列表用键值对的形式保存在new_dict字典中7.读取Label.txt中的所有内容,并保存在列表中(方便数据处理)8.两
2022-07-28 10:54:19
712
原创 PaddleOCR的方向分类器cls如何造数据
1.把照片数据按照奇数偶数分成两个类别,并分别保存到对应的路径并且写入到标签文件中2.把从两个类别汇集好的数据分开到train和test中,并写入train_label.txt和test_label.txt中
2022-06-23 17:49:56
819
原创 windows中cuda版本的切换
windows中cuda版本的切换1.环境变量设置2.切换不同版本的cuda3.操作并查看结果1.环境变量设置系统变量中PATH中2.切换不同版本的cuda切换不同版本的cuda,需要注意上边三个路径的版本号,直接修改系统变量中的版本号,PATH中的把不同版本的cuda上下移动即可,注意对应就行3.操作并查看结果cuda10.2cuda11.2感谢大家的关注和支持希望我写的文章能够让你们得到价值有所收获一直在路上,还请各位多多指正!...
2022-03-31 14:19:19
10147
1
原创 如何把webp转换为jpg
如何把webp转换为jpg@[TOC](如何把webp转换为jpg)1.流转换2.单独一张图片转换3.文件夹图片转换4.嵌套文件夹图片转换5. 数据首先做一个简单的科普,webp后缀的图片是在网页上浏览的时候默认保存的格式,但是真的用起来还是会有些不方便,转换成jpg比较好用,所以今天才要发此文1.流转换from PIL import Imagefrom io import BytesIO # 字节数import logging# import requestsdef change_w
2022-03-24 18:28:05
2523
4
原创 Xshell初次使用conda报错
Xshell初次使用conda报错1 错误2 解决方法1 错误使用conda activate激活虚拟环境时报错2 解决方法根据提示运行conda init,然后重启shellconda init首次使用conda激活虚拟环境,则需要用source activate,之后就可以直接使用conda activatesource activate tf14 # 首次激活虚拟环境conda deactivate # 退出当前环境conda activate tf14 # 再次激活虚拟环
2022-02-11 17:51:49
1863
原创 对tensorflow和pytorch的gpu测试
对tensorflow和pytorch的gpu测试1 tensorflow2 pytorch3 其他测试方法3.1 cmd3.2 Xshell1 tensorflow不论是tensorflow1.14还是2.0以上的版本,都可以用通用的一句来检测gpu是否可行,如果结果是True,则证明可以使用gputf.test.is_gpu_available()参考代码tensorflow的gpu测试,结果为True证明gpu可用import tensorflow as tf# tf14a = tf
2022-02-11 16:32:10
2402
原创 数据处理中的过采样、下采样、联合采样和集成采样
数据处理中的过采样、下采样、联合采样和集成采样1. 导包2. 找数据3. 过采样3.1 RandomOverSampler3.2 SMOTE3.3 SMOTEN3.4 SMOTENC3.5 BorderlineSMOTE3.6 SVMSMOTE3.7 KMeansSMOTE3.8 ADASYN4. 下采样4.1 RandomUnderSampler4.2 ClusterCentroids4.3 NearMiss4.4 EditedNearestNeighbours4.5 RepeatedEditedNear
2022-01-20 18:05:17
8261
原创 用opencv和pillow实现嵌套文件夹照片白边裁剪&格式转换
用opencv和pillow实现嵌套文件夹照片白边裁剪&格式转换1. 导包2. 设置路径3. 查看读取路径中的文件夹名称4. 创建写入路径中的同样名称的文件夹5. 实现裁剪&格式转换6. 结果展示1. 导包import osimport numpy as npimport cv2from PIL import Image2. 设置路径使用pillow路径就把opencv注释掉,使用opencv就把pillow注释掉path = r"fruit1"new_path = r"
2022-01-19 10:46:07
2565
原创 pillow读取&裁剪&写入图片
pillow读取&裁剪&写入图片1. 导包2. 设置读取和写入路径3. 正确读取4. 裁剪前查看图片5. 图像白边切割6. 正确写入7. 裁剪后查看图片8. 查看结果1. 导包pillow就是PIL模块,安装方法pip install pillow,可以加入镜像源,比如:-i
2022-01-18 16:44:23
3911
原创 opencv读取&裁剪&写入图片
opencv读取&裁剪&写入图片1.英文路径1.1 导包1.2 找到英文路径1.3 英文路径读取1.4 图像白边裁剪1.5 英文路径写入1.6 结果展示2.直接读取中文路径2.1 常见问题3. 正确读取中文路径3.1 导包3.2 找到中文路径3.3 正确读取中文路径3.4 图像白边裁剪1.英文路径1.1 导包import cv21.2 找到英文路径eng_path = r"fruit1/cuitao/cuitao-19453282-321255571.png"1.3 英文路径
2022-01-18 14:59:48
3120
原创 简单的数据集train,val切分
简单的数据集train,val切分1.导包2.找到所有数据类型3.没有这样的类型,先创建文件夹4.数据切分&移动位置5.结果展示1.导包import osfrom sklearn.model_selection import train_test_splitimport shutil2.找到所有数据类型images_name = os.listdir("处理后蔬菜水果实例数据/train")print(images_name)3.没有这样的类型,先创建文件夹# 第一次使用创建果
2022-01-17 11:15:18
1465
原创 图片格式转换脚本
把png/jpg/jpeg/PNG/JPG等格式的照片统一成jpg@[TOC](把png/jpg/jpeg/PNG/JPG等格式的照片统一成jpg)1.cv21.1 导包1.2 路径设置1.3 改格式重新传1.3.1 用os.path.splitext()来判断1.3.2 用split()来判断1.4 查看结果2.pillow2.1 导包2.2 路径设置2.3 写格式修改函数2.4 开始转换2.5 查看结果常见的图像任务通常需要把照片统一成相同的格式,所以此文章正是为了统一格式而生,常见的主要有cv2和P
2022-01-04 15:29:06
2730
原创 联邦学习数学公式纯手推
联邦学习数学公式纯手推(逻辑回归为例)1.逻辑回归1.1 基本思想1.2 sigmoid2.联邦学习2.1 背景2.2 本质2.3 目标2.4 分类3.横向逻辑回归3.1 数据要求3.2 应用3.3 比较代价和梯度4.纵向逻辑回归4.1 数据要求4.2 应用4.3 比较代价和梯度5.总结=========================================================以下每个算法都从数据、模型、代价函数以及梯度下降四方面来推导1.逻辑回归1.1 基本思想经典的逻辑回
2021-12-15 18:49:36
3771
5
原创 Fate单机部署(主机版本)
Fate单机部署(主机版本)1.常用网址2.环境配置3.主机单机部署核心4.部署流程4.1 基本配置4.2 检查端口4.3 获取资源并部署4.4 测试4.4.1 单元测试4.4.2 Toy测试4.5 安装FATE-Client和FATE-Test4.6 开启fateboard服务4.7 python命令4.8 flow命令1.常用网址Fate1.6.0联邦学习下载网站:https://github.com/WeBankFinTech/FATEFATE官方网站:https://fate.fedai.or
2021-12-14 16:23:04
3378
5
原创 Fate单机部署(docker版本)常见问题
Fate单机部署(docker版本)常见问题1.docker服务开启2.正确进入fate镜像3.两大测试4.fate镜像中Backspace键失灵5.flow操作1.docker服务开启问题:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?解决:重启docker服务service docker restart2.正确进入fate镜像命令:要注意先启
2021-12-13 18:13:04
1652
原创 Fate单机部署(docker版本)
FATE单机部署指南核心:在虚拟机的CentOS系统的docker镜像里用python命令上传数据和配置文件并在fateboard(镜像自动配置)上展示出来
2021-12-10 16:46:33
4292
10
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人