滚动数组详解

  【滚动数组】 可以想象成显示屏,对于有很多的数字来说,每次只显示有限的数字,用完(显示完)就向后移动一位,显示的数量不变,但是在卡内存比较紧的题中,可以节省很多空间。

 

  最典型的就是斐波那契数列,普通的求解方法不外乎就是用递推式f[i]=f[i-1]+f[i-2],但是这个如果数据量大的话会爆内存,而用滚动数组的方法可以用3个单位大小的空间求得解,这样就节省了很多的空间。


 斐波那契数列普通解法:

 

#include<iostream>
#include<cstdio>
using namespace std;
int f[100];

int ff(int n)
{
	f[0] = 0;
	f[1] = 1;
	f[2] = 1;
	for(int i = 3; i <= n; ++i)
		f[i] = f[i - 1] + f[i - 2];
	return f[n];
}

int main()
{
	int t, n;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d", &n);
		printf("%d\n", ff(n));
	}
	return 0;
}
 


 滚动数组解法:

 

#include<cstdio>
using namespace std;
int f[3];

int ff(int n)
{
	f[1] = 0;
	f[2] = 1;
	for(int i = 2; i <= n; ++i)
	{
		f[0] = f[1];
		f[1] = f[2];
		f[2] = f[0] + f[1];
	}
	return f[2];
}

int main()
{
	int t, n;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d", &n);
		printf("%d\n", ff(n));
	}
	return 0;
}

 这样解释就很明白了,滚动数组一般在DP题和状态压缩算法方面用的多,而且优化后效率很高,推荐使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值