Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function f, which is defined as follows:
In the above formula, 1 ≤ l < r ≤ n must hold, where n is the size of the Main Uzhlyandian Array a, and |x| means absolute value of x. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of f among all possible values of l and r for the given array a.
The first line contains single integer n (2 ≤ n ≤ 105) — the size of the array a.
The second line contains n integers a1, a2, ..., an (-109 ≤ ai ≤ 109) — the array elements.
Print the only integer — the maximum value of f.
5 1 4 2 3 1
3
4 1 5 4 7
6
In the first sample case, the optimal value of f is reached on intervals [1, 2] and [2, 5].
In the second case maximal value of f is reachable only on the whole array.
【题解】 这是一道动态规划中的求最大子段和类问题,不懂最大子段和的童鞋请戳:最大子段和详解
因为题目给的是一个函数,所以我们先把函数的各项都算出来,待用,然后接下来就是裸的求最大子段和解法了。详见代码
【AC代码】
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e5+5;
typedef __int64 ll;
ll a[N],b[N],c[N],m,n;//注意全用长整型
int main()
{
while(~scanf("%I64d",&m))
{
for(int i=1;i<=m;++i)
scanf("%I64d",&a[i]);
b[m]=0;
for(int i=1;i<m;++i)
{
b[i]=abs(a[i]-a[i+1]);
if(!(i&1))//判断奇偶 若果-1的指数是奇数
{
b[i]=-b[i];//值为负
}
c[i]=-b[i];//另存为一个数组
}
ll ans=0,maxn=0;
for(int i=1;i<=m;++i)//求最大子段和
{
ans+=b[i];
if(ans<0)
ans=0;
maxn=max(ans,maxn);
}
ans=0;
for(int i=1;i<=m;++i)
{
ans+=c[i];
if(ans<0)
ans=0;
maxn=max(maxn,ans);
}
maxn=max(maxn,ans);
cout<<maxn<<endl;
}
return 0;
}