2017 icpc 北京赛区 I.Minimum(线段树)

描述

You are given a list of integers a0, a1, …, a2^k-1.

You need to support two types of queries:

1. Output Minx,y∈[l,r] {ax∙ay}.

2. Let ax=y.

输入

The first line is an integer T, indicating the number of test cases. (1≤T≤10).

For each test case:

The first line contains an integer k (0 ≤ k ≤ 17).

The following line contains 2k integers, a0, a1, …, a2^k-1 (-2k ≤ ai < 2k).

The next line contains a integer  (1 ≤ Q < 2k), indicating the number of queries. Then next Q lines, each line is one of:

1. 1 l r: Output Minx,y∈[l,r]{ax∙ay}. (0 ≤ l ≤ r < 2k)

2. 2 x y: Let ax=y. (0 ≤ x < 2k, -2≤ y < 2k)

输出

For each query 1, output a line contains an integer, indicating the answer.

样例输入
1
3
1 1 2 2 1 1 2 2
5
1 0 7
1 1 2
2 1 2
2 2 2
1 1 2
样例输出
1
1
4
【AC代码】

#include<iostream>
#include<cstring>
#include<stdio.h>
#include<math.h>
#include<string>
#include<stdio.h>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<deque>
#include<algorithm>
#define ll long long
#define INF 1008611111
#define M (t[k].l+t[k].r)/2
#define lson k*2
#define rson k*2+1
using namespace std;
ll pmax,pmin;
struct node
{
    int l,r;
    ll minn;
    ll maxx;
}t[600000];
void pushup(int k)
{
    t[k].minn=min(t[lson].minn,t[rson].minn);
    t[k].maxx=max(t[lson].maxx,t[rson].maxx);
}
void build(int l,int r,int k)
{
    t[k].l=l;
    t[k].r=r;
    if(l==r)
    {
        scanf("%lld",&t[k].minn);
        t[k].maxx=t[k].minn;
        return;
    }
    int mid=M;
    build(l,mid,lson);
    build(mid+1,r,rson);
    pushup(k);
}
void update(int pos,int k,int v)
{
    if(t[k].l==t[k].r)
    {
        t[k].minn=v;
        t[k].maxx=v;
        return;
    }
    int mid=M;
    if(pos<=mid)
        update(pos,lson,v);
    else
        update(pos,rson,v);
    pushup(k);
}
void query(int l,int r,int k)
{
    if(t[k].l==l&&t[k].r==r)
    {
        pmin=min(t[k].minn,pmin);
        pmax=max(t[k].maxx,pmax);
        return;
    }
    int mid=M;
    if(r<=mid)
        query(l,r,lson);
    else if(l>mid)
        query(l,r,rson);
    else
    {
        query(l,mid,lson);
        query(mid+1,r,rson);
    }
}
int main()
{
    int i,j,n,m,test,k,d,x,y;
    scanf("%d",&test);
    while(test--)
    {
        scanf("%d",&k);
        n=1;
        for(i=0;i<k;i++)
            n*=2;
        build(0,n-1,1);
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&d,&x,&y);
            if(d==1)
            {
                pmin=INF;
                pmax=-INF;
                query(x,y,1);
                if(pmin>=0)
                {
                    printf("%lld\n",pmin*pmin);
                }
                else
                {
                    if(pmax>=0)
                        printf("%lld\n",pmax*pmin);
                    else
                        printf("%lld\n",pmax*pmax);
                }
            }
            else
            {
                update(x,1,y);
            }
        }
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值