科学计算
文章平均质量分 93
RitasCake
获取更多资讯,欢迎订阅微信公众号:Westerlies
展开
-
SC.Pandas 残卷 | 如何使用Pandas炫技?
可以看到,当我们逐渐深入到后面,涉及的内容越来越多,而这些知识点之间又是相互串联的。简而言之,当我们创建一个Pandas对象,进行索引、切片等操作赋值给一个新变量均是指向原Pandas的地址而已,并非将原数据在内存中复制了一份。而深拷贝则是将原数据复制一份到新的内存地址,我们对该变量的任何操作都将与原变量独立,互不影响。函数可以简单快速地实现数据插值,尤其对于时间序列数据而言,可以有效地填补缺失值,以弥补缺测带来的数据不连续问题。为函数的参数,表达式为函数的主体,可以是任意有效的Python表达式,其。原创 2024-10-29 09:50:42 · 867 阅读 · 0 评论 -
SC.Pandas 05 | 如何使用Pandas拼接数据?
以上就是使用Pandas拼接数据的基本内容了,要说到它的实际应用,最浅显的大概就是把那种以年为单位存储的气象数据批量读取,并合并为完整的时间序列用于后续的处理吧。它根据指定的键将两个DataFrame中的行关联起来,其用法与Excel中的透视功能类似。我们可以注意到,当我们面对一个更为复杂的数据集时,需要更多的设定来得到我们需要的结果。存在相同的值相同才会拼接两个数据,我们指定的温度随机数并不存在重复,因此该结果为空。此外,拼接维度之外的另一维度,若对应位置的数据不存在,则会填充为。原创 2024-10-24 13:05:08 · 820 阅读 · 0 评论 -
SC.Pandas 04 | 如何使用Pandas实现文件IO?
其中青藏高原的大环线应该是足够让人印象深刻的(以后也可以跟别人吹,咱也是登过珠峰的人了),有时间再跟大家分享下高原上的旅途。但是在以往的写作和校对过程中,也注意到过长的篇幅也许对于作者和读者都是一个负担,需要集中一段并不短的时间。话不多说,我们继续来看一下通过Pandas读取和写入文件,实现本地数据与Python间的交互。文件则是纯文本文件,其内容没有任何格式要求,可以是任意格式的文本。毕竟是短视频时代了,那么我们不妨也碎片化吧,一次就完成一个点,相对应地提高频率。因此,其他的要点几乎一致,在拥有多个。原创 2024-10-16 08:09:24 · 696 阅读 · 1 评论 -
SC.Pandas 03 | 如何使用Pandas分析时间序列数据?
我们只需要掌握好这些基础的组件,就可以通过不同的组装方式达到我们最终的目的。针对气象条件的不稳定,平滑去噪是我们常用到的方法,或者我们需要计算三日内降水等指标,均需要使用时间序列数据处理实现。前两期我们对Pandas的数据结构和常用的计算方法进行了介绍,在地球科学领域时间序列分析是很重要的一种数据处理方式。因此,本期我们就从Pandas中时间序列数据处理的角度,来探究地球科学领域中时间序列数据的一些常用方法。有些情况下,我们只知道初始日期或截止日期,我们可以通过所需的时间步长和周期数来计算时间序列。原创 2024-07-15 01:22:16 · 1209 阅读 · 1 评论 -
SC.Pandas 02 | 如何使用Pandas计算、统计地球科学数据?
在理解Pandas如何组织数据,以及我们如何从Pandas中选取我们需要的数据的基础上,这一期我们将对如何使用Pandas进行数据计算、统计进行介绍。需要注意的一个点是:由于Pandas存在行列名的概念,因此当两个不同的Pandas数据运算时,会自动匹配行列名,不存在的行列名会填充为空值。统计是表格存在的意义之一,通过对海量的数据统计分析,获得如均值、方差、中位数等,有利于我们深入了解数据,并从中解析出规律。Pandas提供了丰富的统计函数,可以帮助我们快速计算出数据集的统计指标。函数对数据进行分组聚类。原创 2024-07-12 10:39:44 · 604 阅读 · 0 评论 -
SC.Pandas 01 | 如何使用Pandas分析地球科学数据?
后续我们将涉猎表格的计算、数据清洗、平滑去噪、时间序列分析等内容,相较于数组和基本语法这些更为底层的概念,这些内容更贴近我们的实际工作中最直接的工具。简而言之,Series可以看做一个只有一列的表格;结束了NumPy和Python基本语法的学习后,后续我们的内容将具有更为实际的使用价值,本次关于Pandas的引入将为我们后续深入学习Pandas处理各种类型的表格打下基础。过去的几期推文中我们对Python的基本语法进行了介绍,由于该部分内容的缺失,导致在NumPy的更新中一直受到基本语法的掣肘。原创 2024-06-27 09:46:04 · 1097 阅读 · 0 评论 -
SC.NumPy 05 | 如何实现本地地球科学数据集与NumPy间交互?
后续我们将开始更新Pandas,这个工具我觉得不仅是科学计算本身,就算是用于简化我们平时的Excel拖表也能省去相当多的时间和麻烦,是涉足Python不得不一试的强大工具。的三维数组进行储存。而另一个更常用的操作则是,有些时候前几行内容是无效的,或者我们只需要某几列的数据。当然也可以把它们储存为多个不同的文件,但同类型的数据,我们只需要管理一个文件很多情况下还是比要管理一堆文件要来的方便。需要注意,在更广阔的应用场景中,我们的数据更多地是以矢量、栅格的形式存在的,而非本文提到的这几种数据类型(可能仅有。原创 2024-05-20 08:30:00 · 2225 阅读 · 0 评论 -
SC.NumPy 04 | 重构地球科学数据的一千〇一种方式 100%
又例如,两个气象数据集它们的维度都一样,均包括了纬度、经度、时间、气压场,但是它们轴的顺序却不一致,如何交换轴使它们之间能够运算?这里主要用到数组堆叠(或拼接),它的定义是将多个数组沿着指定轴连接在一起的操作,通常用于将具有相同形状或尺寸的多个数组组合成更大的数组。可能无法给出非常普适性的案例了,需要各位结合自己的使用场景去探索,但在底层的建模中都还算是比较常用的功能吧。简而言之,广播就是这样一种机制。另外就是我们注意到中间涉及到一些比较固定的函数用法其实是其他用法的子集的问题,说的就是你们,那几个。原创 2024-05-16 09:00:00 · 761 阅读 · 0 评论 -
SC.NumPy 03 | 重构地球科学数据的一千〇一种方式 ½
以及另一个问题,我们之前的数组都是在创建时便指定了其维度大小的。显然索引存在一个问题,我们每次只能获取一个位置的值,那么有没有那种更高级的,一次能切下一大块区域组成一个新数组的方式呢?那是因为写稿的时候发现,自己呼呼啦啦写了一堆乱七八糟的,第一节长度就已经严重超标了(低估自己胡说八道的能力了,属于是)。个人感觉我们将储存了地学数据数组的部分内容提取出来实际上也是对数据结构的一种改变,因此这里的标题也就没有索引的一席之地了。所谓语法糖,就是一些封装好的常用功能,广义上来说,所有使用的函数都可以称为语法糖。原创 2024-05-08 17:18:40 · 2033 阅读 · 0 评论 -
SC.NumPy 02 | 地球科学计算到底是在算什么东西?
本来小目标定的是每周更新,结果工作日果然抽不出时间写。相较于上期的原理,这期的具体用法写起来也会有些费劲。周末写写改改,加上昨天工作日,今天就已经周一了。以后还是会继续争取每周更新的,应该就基本固定周末写,隔周工作日更吧。另外再聊聊学习Python函数,前面arange和linspace的时候我们提到了这一点。虽然开源赋予了Python强大的生命力,但缺少官方的规范,导致其过度自由。野蛮生长的结果就是混乱与无序,各个第三方库之间不兼容和和冲突的问题明显,甚至很多库其本身就存在极大地不规范。原创 2024-04-29 17:13:23 · 859 阅读 · 0 评论 -
SC.NumPy 01 | 引入、概念
鸽了不知道多久的公众号,终于写出了第一篇(所有推送内容均同步至和鲸社区、腾讯云与CSDN,欢迎关注)。属实费老大劲儿了,后面熟悉了应该能高效一点。从设计风格到主题样式,从主体内容到行文结构,很多东西比预想的复杂,当然也有些部件实际上难度被高估了。「万事开头难」,虽说中间和结尾也难说会简单到哪里去,但总算是开始填坑了。当然,未来也可能会挖很多最终都没填完的坑。更多关于创建公众号的过程和奇思妙想欢迎移步『序章』听我絮絮叨叨。另外,欢迎大家留言评论哈。原创 2024-04-19 19:37:51 · 1034 阅读 · 0 评论