MFC实现ENVI分类影像混淆矩阵(Confusion Matrix)及精度计算(Overall Accuracy和Kappa Coefficient)

本文介绍了如何使用MFC在Windows环境下实现ENVI分类影像的混淆矩阵,并通过混淆矩阵计算Overall Accuracy和Kappa Coefficient,以评估分类精度。详细展示了混淆矩阵的计算代码和Kappa系数的计算公式及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混淆矩阵(Confusion Matrix)

混淆矩阵计算代码:

// 打开两幅待比较的分类影像
CFile datClassifyImg(ImgPath1, CFile::modeRead | CFile::typeBinary);// ImgPath1:路径根据自己的路径更换
CFile datGroundTruth(ImgPath2, CFile::modeRead | CFile::typeBinary);// ImgPath2:路径根据自己的路径更换

int nClass = 5;// 根据你的类别数更改
int TotalPixel = samples * lines;// 根据你的图像来确定像素数量

// 混淆矩阵是类别数的方阵
vector<vector<int>>ConfusionMatrix(nClass, vector<int>(nClass));

// 读取两个分类影像,构建混淆矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值