紫书
王其狗勾儿痒
这个人很懒, 什么都没有留下!
展开
-
UVA10820 交表(Send a Table)
思路 : 欧拉函数打表(1~~n) 随便找一组数据: n=4 (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4) 会发现这是关于对角线(11)(22)(33)(44)对称的 因此只用求左下半部分的就可以 然后把每行的欧拉函数相加(因为对称 所以*...原创 2018-08-09 11:52:49 · 196 阅读 · 0 评论 -
UVA12169欧几里得
2中方法. 第一种是暴力, 枚举1~10000的a,b; 即2个for循环+判断for循环 第二种是欧几里得 欧几里得法: #include<iostream> using namespace std; typedef long long ll; const int maxn = 10001; void gcd(ll a, ll b, ll& d, ll& ...原创 2018-08-07 17:36:28 · 145 阅读 · 0 评论 -
UVA10375分解定理
用暴力很麻烦,就只有分解了。 1. 求10000内的素数 2. 把每个分子分母分解----成-----素数的幂形式 eg: 5!/4! 1. 5!= 1, 2, 3, 4, 5; 1 = 1^1; 2 = 2^1; 3 = 3^1; 4 = 2^2;.........即把任意数分解为素数的乘积: 12 = 2^2 * 3; 42 = 2*3*7;.... 2. ...原创 2018-08-07 22:05:58 · 123 阅读 · 0 评论 -
UVA10791最小公倍数的最小和_分解定理
思路: 把n分解为质素的幂 然后相加 1.需要注意: 32 = 2^4; 此时一次性分解了32 所以和为33 2.当n没有被分解, 在2~sqrt(n)没有可除的数, 说明n为质素 3.当n没有被分解完, 74=2*37; 2~sqrt(74); 还要把剩余的n加上. java code: import java.util.Scanner; public class Main {...原创 2018-08-08 10:12:56 · 319 阅读 · 0 评论