都市环游

都市环游

题目描述

因为SJY干的奇怪事情过多,SJY收到了休假的通知,于是他准备在都市间来回旅游。SJY有一辆车子,一开始行驶性能为0,每过1时间行驶性能就会提升1点。每个城市的道路都有性能要求。SJY一共有t时间休息,一开始他位于1号城市(保证1号城市道路要求为0),他希望在n号城市结束旅程。每次穿过一条城市间的路会花费1时间,当然他也可以停留在一个城市不动而花费1时间。当且仅当车子的行驶性能大于等于一个城市,我们才能到达那里。SJY希望知道,旅游的方案模10086后的答案。(只要在某一时刻通过的道路存在一条不相同,就算不同的方案)

输入

第一行三个数n,m,t,表示有n个城市m条道路t时间。
第二行n个数,hi表示第i个城市的道路性能要求。

第三到m+2行,每行两个数u,v,表示城市u与城市v之间有一条单向道路连接(可能有重边)。

输出

包括一个数字,表示旅游的方案模10086。

样例输入

5 17 7
0 2 4 5 3
1 2
2 1
1 3
3 1
1 4
4 1
4 5
5 4
5 3
4 1
2 1
5 3
2 1
2 1
1 2
2 1
1 3

样例输出

245

提示

【数据规模和约定】

对于20%的数据,n<=10,t<=80;

对于50%的数据,n<=30,t<=80;

对于100%的数据,n<=70,m<=1000,t<=100000000,hi<=70。

solution:

算法1:DP。

f[i][j]表示第j时间到第i个城市的方案数,

f[1][0]=1;
    for(int j=1;j<=t;j++)
        for(int i=1;i<=n;i++){
            f[i][j]=f[i][j-1];
            if(j>=a[i])
                for(int e=head[i];e;e=Next[e])
                    f[i][j]=(f[i][j]+f[vet[e]][j-1])%10086;
        }
    printf("%d\n",f[n][t]);

但是……t太大了,这样子只有50分。
时间复杂度O(nt)

算法2:

矩阵乘法
有这样一个结论:要求路径方案数就是把多个邻接矩阵相乘。
把在原地不动看作是自环。
然后,观察到h[i]的值很小,就将前面有性能约束的时间里一个一个做矩阵乘法。后面性能已经足够好,想跑什么城市都可以,就不用关心能不能去那个城市,只关心要用多少时间。这个时间非常的大,一个一个的做乘法肯定是要TLE的,由于每次乘的都一样,用快速幂优化一下就可以了。
要注意这几个细节:在处理前面一部分的邻接矩阵时,要小心性能约束。对于边e(u,v),当时的性能a,当且仅当a>h[u]&&a>=h[v]时这条边可以取用,否则为0。因为这条边可取须有上一时刻可以到达u&&这一时刻可以到达v。我不小心把两个都写成了>=于是就完美的WA了。
这份代码是分类的,防止打错了全炸……将就一下

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<cstring>
using namespace std;
typedef long long ll;
ll read(){
    ll ans=0;
    char ch=getchar(),last=' ';
    while(ch>'9'||ch<'0'){
        last=ch;
        ch=getchar();
    }
    while(ch<='9'&&ch>='0'){
        ans=ans*10+ch-'0';
        ch=getchar();
    }
    if(last=='-')
        ans=-ans;
    return ans;
}
int mt,nt,tt,n,m,t,a[80],f[80][10000],vet[10000],Next[10000],head[10000],en,ans,ft[75][75],f0[75][75],f2[75][75],fn[75][75];//a就是题目中的h
int main(){
    n=read();
    m=read();
    t=read();
    for(int i=1;i<=n;i++){
        a[i]=read();
        mt=max(mt,a[i]);
        f0[i][i]=1;
    }
    for(int i=1;i<=m;i++){
        int x,y;
        x=read();
        y=read();
        f0[x][y]++;
        en++;
        vet[en]=x;
        Next[en]=head[y];
        head[y]=en;
    }
    if(t>=10000){
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                f2[i][j]=f0[i][j];
        for(int ntt=1;ntt<=mt;ntt++){
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    fn[i][j]=(ntt>a[i]&&ntt>=a[j] ? f0[i][j] : 0);
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++){
                    ft[i][j]=0;
                    for(int k=1;k<=n;k++)
                        ft[i][j]=(ft[i][j]+f2[i][k]*fn[k][j])%10086;
                }
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    f2[i][j]=ft[i][j];
        }
        tt=t-mt;
        nt=1;
        while(tt){
            if(tt&nt){
                tt-=nt;
                for(int i=1;i<=n;i++)
                    for(int j=1;j<=n;j++){
                        ft[i][j]=0;
                        for(int k=1;k<=n;k++)
                            ft[i][j]=(ft[i][j]+f2[i][k]*f0[k][j])%10086;
                    }
                for(int i=1;i<=n;i++)
                    for(int j=1;j<=n;j++)
                        f2[i][j]=ft[i][j];
            }
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++){
                    ft[i][j]=0;
                    for(int k=1;k<=n;k++)
                        ft[i][j]=(ft[i][j]+f0[i][k]*f0[k][j])%10086;
                }
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    f0[i][j]=ft[i][j];
            nt<<=1;
        }
        printf("%d\n",f2[1][n]);
        return 0;
    }
    f[1][0]=1;
    for(int j=1;j<=t;j++)
        for(int i=1;i<=n;i++){
            f[i][j]=f[i][j-1];
            if(j>=a[i])
                for(int e=head[i];e;e=Next[e])
                    f[i][j]=(f[i][j]+f[vet[e]][j-1])%10086;
        }
    printf("%d\n",f[n][t]);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_38601996/article/details/74986478
个人分类: 矩阵乘法
想对作者说点什么? 我来说一句

八十天环游地球》英文版.

2010年05月03日 627KB 下载

欧拉环游 FLEURY算法

2010年05月04日 23KB 下载

E都市2.5D侧向切图WebGIS源代码1

2011年03月26日 19MB 下载

没有更多推荐了,返回首页

不良信息举报

都市环游

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭