Hadoop学习
小蚂蚁爱吃肉
学生界的菜鸟
展开
-
Hadoop公司考试题(基础)
Hadoop公司考试题(基础)几乎快忘记考试为何物的时候,突然参加考试,慌的一批。百度答案发现,老师们也是偷懒,居然用 牛* 的基础试题1、现在在hadoop集群当中的配置文件中有这么两个配置,请问假如集群当中有一个节点宕机,主节点namenode需要多长时间才能感知到?<property><name>dfs.heartbeat.interval</name><value>3</value></property><原创 2020-12-02 15:23:01 · 1261 阅读 · 0 评论 -
HDFS的读写流程
HDFS的读流程读详细步骤:1、client访问NameNode,查询元数据信息,获得这个文件的数据块位置列表,返回输入流对象。2、 就近挑选一台datanode服务器,请求建立输入流 。3、DataNode向输入流中中写数据,以packet为单位来校验。4、关闭输入流HDFS的写流程1、跟NameNode通信请求上传文件,NameNode检查目标文件是否已经存在,父目录是否已经存在2、NameNode返回是否可以上传3、Client先对文件进行切分,请求第一个block该传输到哪些Dat原创 2020-09-28 17:08:24 · 129 阅读 · 0 评论 -
简要描述安装配置apache的一个开源Hadoop集群
安装Hadoop集群的简要步骤(1)集群准备工作a. 准备三台客户机(配置IP,编写主机名,配置网络,关闭防火墙......)(2)安装JDK,安装hadoop(3)配置JAVA_HOME 和 HADOOP_HOME的环境变量(4)使节点上的环境变量生效(使用命令 source /etc/profile)(5) 明确集群配置(6) 修改配置文件a)**core...原创 2019-10-29 14:05:18 · 556 阅读 · 0 评论 -
hdfs客户端的学习理解
对hdfs客户端的理解(1)该客户端的形式有多种a.网页形式b. 命令行形式c.客户端在哪儿运行,都可以,只要该客户端可以和集群联网就行(2)文件的切块大小和存储的副本数量,都是由客户端决定!所谓的由客户端决定,是通过配置参数来定的hdfs的客户端会读以下两个参数,来决定切块大小、副本数量:切块大小的参数:dfs.blocksize副本数量的参数:dfs....原创 2019-10-29 10:51:59 · 285 阅读 · 0 评论 -
hadoop的作业提交过程之yarn
作业提交过程简单的分为 6 步(1)作业提交 第0步:client调用job.waitForCompletion方法,向整个集群提交MapReduce作业 第1步:client向RM(ResourceManager)申请(application)一个作业id 第2步:RM给client返回该job的资源的提交路径和作业id。 第3步:client提交jar包、切片信息和配...原创 2019-10-25 15:57:03 · 462 阅读 · 0 评论 -
大数据学习之Hadoop任务输出到多个目录中
有可能使 Hadoop 任务输出到多个目录中吗?如果可以的话,怎么做?1)可以输出到多个目录中,采用自定义OutputFormat。2)实现步骤:(1)自定义outputformat,(2)改写recordwriter,具体改写输出数据的方法write()...原创 2019-10-25 14:33:21 · 399 阅读 · 0 评论 -
hadoop中的合并(Combine)与归并(Merge)
例如有两个键值对 <“a”,1> 和 <“a”,1>,如果合并,会得到<“a”,2>,如果归并,会得到<“a”,<1,1>>。原创 2019-10-25 14:11:16 · 4649 阅读 · 0 评论 -
Hadoop之mapReduce有几种排序及排序发生的阶段
1)排序的分类:(1)部分排序:MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部排序。(2)全排序:如何用Hadoop产生一个全局排序的文件?最简单的方法是使用一个分区。但该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构。替代方案:首先创建一系列排好序的文件;其次,串联这些文件;最后,生成一个全局排序...原创 2019-10-25 13:48:25 · 1715 阅读 · 0 评论 -
Hadoop的map阶段流程
在学习这部分的时候,一直想弄明白,因此在博客上找到一张图,自己保存了,原文章自己没收藏,因此只留下一张图希望这个图可以让大家更好的理解这个知识点,同时也谢谢这个图的作者!!!...原创 2019-10-25 11:14:00 · 502 阅读 · 0 评论