数字图像处理
文章平均质量分 95
数字图像处理笔记
jackrma
这个作者很懒,什么都没留下…
展开
-
Matlab肤色分割
一、作业题目:肤色分割。找一张人脸图像,尝试进行肤色分割。二、函数分析:1、rgb2hsv() 定义:将RGB颜色转换为HSV 形式:HSV = rgb2hsv(RGB) 描述:将RGB图像的红色、绿色和蓝色值转换为HSV图像的色调、饱和度和值(HSV)值。RGB转HSV公式:2、rgb2ycbcr() 定义:将RGB颜色值转换为YCbCr颜色空间形式:YCBCR = rgb2ycbcr(RGB)描述:将RGB图像的红色、绿色...原创 2020-11-24 23:32:06 · 5080 阅读 · 1 评论 -
Matlab90%椒盐噪声,MSE评价
一、目标:对lena.bmp图像采用转成灰度图后,加入90%强度的椒盐噪声。尝试任意方法,能够较好恢复图像。采用MSE评价二、分析:此次恢复方案采用https://github.com/gkh178/noise-adaptive-switching-non-local-means三、代码展示:关键算法:function output_image = NASNLM(input_image,t,f,h)[row, column] = size(input_image);o..转载 2020-11-18 20:36:33 · 1621 阅读 · 0 评论 -
Matlab运动模糊,维纳滤波
一、目标:任选一幅彩色风景图片作为源图像,设置不同的模糊参数实现任一副图像的运动模糊(fspecial,imfilter函数),再用imadd和imnoise给图像添加不同类型的噪声,显示噪声图像。对1产生的图像分别进行复原,选用维纳滤波器进行图像复原,显示处理结果。二、函数分析:1、fspecial() 定义:创建预定义的二维过滤器 形式:h = fspecial('motion',len,theta)描述:h = fspecial('motion',len...原创 2020-11-10 11:19:37 · 13508 阅读 · 1 评论 -
Matlab高频强调滤波增强,高斯高通滤波器,巴特沃斯高通滤波器图像处理
一、任务:对lena图像采用高频强调滤波增强方法,并分析方法的效果。(理想、巴特沃斯、高斯)。其结果好不好?能否有改善的方法?二、函数分析:1、高斯高通滤波器传递函数:高斯低通滤波器传递函数:D0指截止频率。2、巴特沃斯高通滤波器 传递函数:巴特沃斯低通滤波器传递函数:描述:在公式中,D(u,v)代表频域当中,点(u,v)到中心点的距离。而D0就是截止距离了,就相当于在频域当中画一个圈,对圈内或者圈外保留...原创 2020-10-19 20:32:11 · 15618 阅读 · 3 评论 -
Matlab椒盐噪声、均值滤波、中值滤波及窗口尺寸影响
一、目标:对lena图像加入椒盐噪声,强度为30%,分别采用均值滤波,中值滤波进行处理。并讨论不同尺寸的模板对结果影响二、函数分析:1、imnoise() 定义:给图像增加噪声 形式:J = imnoise(I,'gaussian') J = imnoise(I,'localvar',var_local) J = imnoise(I,'salt & pepper',d)等 描述:J = imno...原创 2020-10-05 16:26:11 · 15796 阅读 · 0 评论 -
Matlab幂律变换及直方图均衡化
一、目标: 1、实现幂律变换,可以尝试调整gamma数值,观察图像变换。分析Lena图像(灰度)在不同gamma数值下,图像灰度变换的特点。 2、观察Lena图像的直方图。实现Lena图像的直方图均衡,观察效果。二、函数分析:1、幂律变换: 又叫幂次变换、伽马矫正。 幂次变换的基本表达式为:y=cxr+b 其中c、r均为正数。与对数变换相同,幂次变换将部分灰度区域映射到更宽的区域中。当...原创 2020-09-27 12:46:35 · 9765 阅读 · 0 评论 -
Matlab函数imread() imshow() subplot() rgb2gray() imresize(),读取图像显示、尺度变换、反色
一、目标: 1、练习以下函数imread()、imshow()、subplot()、rgb2gray()、imresize() 2、读取lena.bmp图像并显示,将其反色处理后再显示二、函数分析:1、imread() 定义:从图形文件读取图像 形式:A = imread(filename) 描述:从filename指定的文件中读取图像,从其内容推断文件的格式。如果文件名是多图像文件,则imread将读取文件中的...原创 2020-09-18 01:36:58 · 6417 阅读 · 2 评论