Atcoder agc028F

考虑从大往小枚举左上角 ( i , j ) (i,j) (i,j),求出所有能到达的点的权值和 s u m [ i ] [ j ] sum[i][j] sum[i][j]
如果 ( i , j + 1 ) (i,j+1) (i,j+1) ( i + 1 , j ) (i+1,j) (i+1,j)中至多只有一个非障碍格子,那么容易计算。否则直接加上 s u m [ i ] [ j + 1 ] sum[i][j+1] sum[i][j+1] s u m [ i + 1 ] [ j ] sum[i+1][j] sum[i+1][j]会记重,考虑减掉两个点都能到达的。
考虑记录 m a x n [ i ] [ j ] [ k ] maxn[i][j][k] maxn[i][j][k] m i n n [ i ] [ j ] [ k ] minn[i][j][k] minn[i][j][k]表示 ( i , j ) (i,j) (i,j)能到达的点中,第 k k k行纵坐标最大和最小的,显然对于 ( i , j + 1 ) (i,j+1) (i,j+1) ( i + 1 , j ) (i+1,j) (i+1,j)都能到的行 k k k m i n n [ i + 1 ] [ j ] [ k ] ≤ m i n n [ i ] [ j + 1 ] [ k ] minn[i+1][j][k]\leq minn[i][j+1][k] minn[i+1][j][k]minn[i][j+1][k] m a x n [ i + 1 ] [ j ] [ k ] ≤ m a x n [ i ] [ j + 1 ] [ k ] maxn[i+1][j][k]\leq maxn[i][j+1][k] maxn[i+1][j][k]maxn[i][j+1][k]。注意到路径相交可以交换,于是可以发现一些性质:如果第 k k k行有 ( i , j + 1 ) (i,j+1) (i,j+1) ( i + 1 , j ) (i+1,j) (i+1,j)都能到的点,那么必然包括 ( k , m i n n [ i ] [ j + 1 ] [ k ] ) (k,minn[i][j+1][k]) (k,minn[i][j+1][k]),并且更好的性质是两个点都能到的点是若干个 m i n n [ i ] [ j + 1 ] [ k ] minn[i][j+1][k] minn[i][j+1][k]可达点集的并,且这些点集所占据的行和列不相交,于是容易在 O ( N ) \mathcal O(N) O(N)的复杂度内求出它的大小。
这样实现是 O ( N 3 ) \mathcal O(N^3) O(N3)的,由于常数很小可以通过。标算貌似是 O ( N 2 log ⁡ N ) \mathcal O(N^2\log N) O(N2logN)的,有时间再补。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int sumv[1505][1505],rpos[1505][1505];
int minn[2][1505][1505],maxn[2][1505][1505];

char str[1505][1505];

int main() {
  int n;
  scanf("%d",&n);
  for(int i=1;i<=n;i++) scanf("%s",str[i]+1);
  int cur=0;
  ll ans=0;
  for(int i=n;i>0;i--) {
  	cur^=1;
  	for(int j=n;j>0;j--)
  	  if (str[i][j]!='#') {
  	  	  sumv[i][j]=sumv[i][j+1]+sumv[i+1][j]+str[i][j]-'0';
  	  	  rpos[i][j]=max(max(rpos[i][j+1],rpos[i+1][j]),i);
  	  	  minn[cur][j][i]=j;
  	  	  for(int k=i+1;k<=rpos[i+1][j];k++) minn[cur][j][k]=minn[cur^1][j][k];
  	  	  for(int k=max(rpos[i+1][j],i)+1;k<=rpos[i][j+1];k++) minn[cur][j][k]=minn[cur][j+1][k];
  	  	  maxn[cur][j][i]=j;
  	  	  for(int k=i;k<=rpos[i][j+1];k++) maxn[cur][j][k]=maxn[cur][j+1][k];
  	  	  for(int k=max(rpos[i][j+1],i)+1;k<=rpos[i+1][j];k++) maxn[cur][j][k]=maxn[cur^1][j][k];
  	  	  int d=i+1,r=min(rpos[i][j+1],rpos[i+1][j]);
  	  	  while (d<=r) {
  	  	  	    if (maxn[cur^1][j][d]>=minn[cur][j+1][d]) {
  	  	  	    	    sumv[i][j]-=sumv[d][minn[cur][j+1][d]];
  	  	  	    	    d=rpos[d][minn[cur][j+1][d]];
					  }
  	  	  	    d++;
			  }
		  ans+=(ll)(str[i][j]-'0')*(sumv[i][j]-(str[i][j]-'0'));
		}
  }
  printf("%lld\n",ans);
  return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值