显然考虑容斥,求出钦定前 k k k种调料最终使用不超过 1 1 1次的方案数 F [ k ] F[k] F[k]即可。
考虑如何求出 F F F。对于一个方案,我们可以考虑其中所有使用了这 k k k种调料中某几种的拉面,那么它们显然将这 k k k种调料中用了一次的调料分为了若干个非空集合,不妨设分成了 c c c个集合,枚举用了一次的调料数目,可知对应的方案数为 ∑ i = c k ( k i ) ⋅ s ( i , c ) ⋅ 2 2 n − k ⋅ 2 c ⋅ ( n − k ) \sum_{i=c}^{k}{k\choose i}\cdot s(i,c)\cdot 2^{2^{n-k}}\cdot 2^{c\cdot (n-k)} ∑i=ck(
Atcoder arc096E
最新推荐文章于 2024-11-26 00:13:54 发布