300iq Contest 3简要题解

和dcx打了一场300iq contest 3,垫底了。
A:
有两个做法。
第一个做法是考虑对于一个合法的点集 S S S,一定存在一个树上的连通块,使得从连通块中任何一点,距离 S S S中任一点不超过 x 2 \frac{x}{2} 2x。注意当 x x x为奇数时,连通块可能会缩到一条边的中点上。考虑枚举连通块中的点,用“点-边”来统计答案。具体是对某个点(边中点),令 T T T为距离它不超过 x 2 \frac{x}{2} 2x的点的集合,这个点会在 S S S的连通块中当且仅当 S ⊆ T S\subseteq T ST。于是给每个点和每条边中点算出对应 T T T的大小,那么对答案的贡献用一个FFT卷积即可快速计算。算 T T T的大小可以用点分治,时间复杂度 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn)
另一个做法用了一个结论。令 G = T x G=T^x G=Tx,那么 G G G是弦图,且若将节点按以任意节点为根时的深度排序(深度相同任意)的逆序,是一个完美消除序列。有了这个结论,我们可以考虑枚举 S S S在完美消除序列中最后出现的点 X X X,则在 X X X前面,且在树上距离它不超过 x x x的集合 T T T满足 T + X T+X T+X是一个团,即 T T T中任选节点,加上 X X X均合法。这里同样需要用FFT卷积加速,瓶颈在于前面的计算,视时间时间复杂度为 O ( n log ⁡ 2 n ) \mathcal O(n\log^2n) O(nlog2n) O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn)

#include <bits/stdc++.h>
#define MOD 998244353

using namespace std;

typedef long long ll;

ll pow_mod(ll x,int k) {
   
  ll ans=1;
  while (k) {
   
  	if (k&1) ans=ans*x%MOD;
  	x=x*x%MOD;
  	k>>=1;
  }
  return ans;
}

ll facd[300005],facv[300005];

void pre(int n) {
   
  facd[0]=1;
  for(int i=1;i<=n;i++) facd[i]=facd[i-1]*i%MOD;
  facv[n]=pow_mod(facd[n],MOD-2);
  for(int i=n-1;i>=0;i--) facv[i]=facv[i+1]*(i+1)%MOD;
}

const int Maxn=1<<20;

ll *w[20];

void ntt_init() {
   
  for(int i=2,t=0;i<=Maxn;i<<=1,t++) {
   
  	w[t]=new ll[i>>1];
  	ll wn=pow_mod(3,(MOD-1)/i);
  	w[t][0]=1;
  	for(int j=1;j<(i>>1);j++) w[t][j]=w[t][j-1]*wn%MOD;
  }
}

void rev(ll *p,int len) {
   
  int j=len>>1;
  for(int i=1;i<len-1;i++) {
   
  	if (i<j) swap(p[i],p[j]);
  	int k=len>>1;
  	while (j>=k) {
   
  		j-=k;
  		k>>=1;
	  }
	if (j<k) j+=k;
  }
}

void ntt(ll *p,int len,int check) {
   
  rev(p,len);
  for(int i=2,t=0;i<=len;i<<=1,t++)
    for(int j=0;j<len;j+=i)
      for(int k=j;k<j+(i>>1);k++) {
   
      	ll u=p[k];
      	ll v=w[t][k-j]*p[k+(i>>1)];
      	p[k]=(u+v)%MOD;
      	p[k+(i>>1)]=(u-v)%MOD;
	  }
  if (check==-1) {
   
  	reverse(p+1,p+len);
  	ll nev=pow_mod(len,MOD-2);
  	for(int i=0;i<len;i++) p[i]=(p[i]+MOD)*nev%MOD;
  }
}

vector <int> e[600005];
int n,val[300005];

namespace TDC {
   

int size1[600005],size2[600005];
bool vis[600005];
int sz,rt;

void dfs2(int x,int fa) {
   
  size1[x]=1;size2[x]=0;
  for(int i=0;i<e[x].size();i++)
    if (!vis[e[x][i]]&&e[x][i]!=fa) {
   
    	int u=e[x][i];
    	dfs2(u,x);
    	size1[x]+=size1[u];
    	size2[x]=max(size2[x],size1[u]);
	}
}

void dfs3(int x,int fa) {
   
  for(int i=0;i<e[x].size();i++)
    if (!vis[e[x][i]]&&e[x][i]!=fa) dfs3(e[x][i],x);
  size2[x]=max(size2[x],sz-size1[x]);
  if (size2[x]<size2[rt]) rt=x;
}

int p[600005][25],dep[600005][25];
int* sum1[600005],*sum2[600005];

int sumv[600005],maxd;
int max1[600005],max2[600005];

void dfs4(int x,int fa,int v) {
   
  p[x][++p[x][0]]=v;
  if (fa) dep[x][p[x][0]]=dep[fa][p[fa][0]]+1;
  for(int i=0;i<e[x].size();i++)
    if (!vis[e[x][i]]&&e[x][
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值