HDU - 1233-还是畅通工程
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
对每个测试用例,在1行里输出最小的公路总长度。
Input
当N为0时,输入结束,该用例不被处理。
Output
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
这个模板是数据结构课本上的,适合这道题,但不适合其他题,以至于坑了我自己一大把,也可能是我笨吧(~ ̄(OO) ̄)ブ
想看prim的模板可以去我的其他文章,比如畅通工程再续,或者Constructing Roads
#include <bits/stdc++.h>///还是畅通工程 最小生成树prim算法模板课本的只适用于特殊情况的模板,坑死我了
using namespace std;
#define MAXV 1005
#define INF 0x3f3f3f3f
int Tu[MAXV][MAXV];
int N,M,minn;
void init()//数据的初始化
{
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
{
if(i==j)
Tu[i][j]=0;
else
Tu[i][j]=INF;
}
}
void prim()
{
int lowcost[MAXV];///保存权值,用来查找最小。已经查过使值等于0
int closet[MAXV];///保存路。
int i,j,k;
for(i=1;i<=N;i++)///初始化距离起点的值lowcost
{
lowcost[i]=Tu[1][i];//起点为1
//closet[i]=1;//保存起点
}
for(i=2;i<=N;i++)///遍历除起点外所有的点
{
int minds=INF;
for(j=1;j<=N;j++)///找到距离最近的值
{
if(lowcost[j]!=0&&lowcost[j]<minds)///找到要新加入点k
{
minds=lowcost[j];
k=j;
}
}
lowcost[k]=0;///已经查过使值等于0
minn+=minds;///路程和
//printf("满足条件的边(%d,%d),权值为%d\n",closet[k],k,minds);
for(j=1;j<=N;j++)///更新lowcost
{
if(Tu[k][j]!=0&&Tu[k][j]<lowcost[j])///在没查找过的值和相同的点之外。根据新加入的k,查找是否有距离更近的值。
{
lowcost[j]=Tu[k][j];
//closet[j]=k;///将点保存
}
}
}
}
int main()
{
int a,b,c;
while(scanf("%d",&N),N!=0)
{
minn=0;
init();
M=N*(N-1)/2;
while(M--)
{
scanf("%d%d%d",&a,&b,&c);
Tu[a][b]=Tu[b][a]=min(Tu[a][b],c);
}
prim();
printf("%d\n",minn);
}
}