图像语义分割(一)

1 图像语义分割的概念

图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分

这里写图片描述

2 语义分割的网络

2.1 FCN 全卷积网络

作者的FCN主要使用了三种技术:

  • 卷积化(Convolutional)
  • 上采样(Upsample)
  • 跳跃结构(Skip Layer)

直接进行像素级别端到端(end-to-end)的语义分割,它可以基于主流的深度卷积神经网络模型(CNN)来实现。
这里写图片描述

2.1.1 卷积化

在FCN中,传统的全连接层 fc6 和 fc7 均是由卷积层实现,而最后的 fc8 层则被替代为一个 21 通道(channel)的 1x1 卷积层,作为网络的最终输出。之所以有 21 个通道是因为 PASCAL VOC 的数据中包含 21 个类别(20个object类别和一个「background」类别)。

2.1.2 上采样、跳跃结构

FCN 利用双线性插值将响应张量的长宽上采样到原图大小,另外为了更好的预测图像中的细节部分,FCN 还将网络中浅层的响应也考虑进来。就是将 Pool4 和 Pool3 的响应也拿来,分别作为模型 FCN-16s 和 FCN-8s 的输出,与原来 FCN-32s 的输出结合在一起做最终的语义分割预测(如下图所示)。

这里写图片描述

2.1.3 上采样的方法

FCN的架构使用了可学习的反卷积滤波器来上采样特征图。之后上采样的特征图被加入编码阶段产生的元素级的特征图中。

  • 先进行上采样,即扩大像素;
  • 再进行卷积——通过学习获得权值
  • 卷积核尺寸大,一步到位
    这里写图片描述

2.1.4 FCN 的结果

下图是不同层作为输出的语义分割结果,可以明显看出,由于池化层的下采样倍数的不同导致不同的语义分割精细程度。如 FCN-32s,由于是 FCN 的最后一层卷积和池化的输出,该模型的下采样倍数最高,其对应的语义分割结果最为粗略;而 FCN-8s 则因下采样倍数较小可以取得较为精细的分割结果。
这里写图片描述

2.2 Dilated Convolutions

FCN 的一个不足之处在于,由于池化层的存在,响应张量的大小(长和宽)越来越小,但是FCN的设计初衷则需要和输入大小一致的输出,因此 FCN 做了上采样。但是上采样并不能将丢失的信息全部无损地找回来。
池化层可以能增大上层卷积核的感受野,而且能聚合背景同时丢弃部分位置信息。然而,语义分割方法需对类别图谱进行精确调整,因此需保留池化层中所舍弃的位置信息。

对此,dilated convolution 是一种很好的解决方案——既然池化的下采样操作会带来信息损失,那么就把池化层去掉。但是池化层去掉随之带来的是网络各层的感受野(Receptive field)变小,这样会降低整个模型的预测精度。Dilated convolution 的主要贡献就是,如何在去掉池化下采样操作的同时,而不降低网络的感受野。

2.2.1 膨胀卷积(Dilated Convolutions)

以 3×3 的卷积核为例,传统卷积核在做卷积操作时,是将卷积核与输入张量中「连续」的 3×3 的 patch 逐点相乘再求和(如下图a,红色圆点为卷积核对应的输入「像素」,绿色为其在原输入中的感知野)。而 dilated convolution 中的卷积核则是将输入张量的 3×3 patch 隔一定的像素进行卷积运算。如下图 b 所示,在去掉一层池化层后,需要在去掉的池化层后将传统卷积层换做一个「dilation=2」的 dilated convolution 层此时卷积核将输入张量每隔一个「像素」的位置作为输入 patch 进行卷积计算,可以发现这时对应到原输入的感知野已经扩大(dilate)倍 ;同理,如果再去掉一个池化层,就要将其之后的卷积层换成「dilation=4」的 dilated convolution 层,如图 c 所示。这样一来,即使去掉池化层也能保证网络的感受野,从而确保图像语义分割的精度。
这里写图片描述

感受野尺寸的扩充公式:

3+(dilate
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值