路灯监控:根据坐标,时间段算出,日出日落作息16进制作息表
1、效果图
2、代码部分
2.1、SunRiseSet 工具类
package com.lg.sun;
import java.math.BigDecimal;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
/**
* 算出日出日落时间
*
* (1)先计算出从格林威治时间公元2000年1月1日到计算日天数days;
* (2)计算从格林威治时间公元2000年1月1日到计算日的世纪数t, 则t=(days+UTo/360)/36525;
* (3)计算太阳的平黄径 : L=280.460+36000.770×t;
* (4)计算太阳的平近点角 :G=357.528+35999.050×t
* (5)计算太阳的黄道经度 :λ=L+1.915×sinG+0.020xsin(2G);
* (6)计算地球的倾角 ε=23.4393-0.0130×t;
* (7)计算太阳的偏差 δ=arcsin(sinε×sinλ);
* (8)计算格林威治时间的太阳时间角GHA: GHA=UTo-180-1.915×sinG-0.020×sin(2G) +2.466×sin(2λ)-0.053×sin(4λ)
* (9)计算修正值e: e=arcos{[ sinh-sin(Glat)sin(δ)]/cos(Glat)cos(δ)}
* (10)计算新的日出日落时间 :UT=UTo-(GHA+Long±e); 其中“+”表示计算日出时间,“-”表示计算日落时间;
* (11)比较UTo和UT之差的绝对值,如果大于0.1°即0.007小时,把UT作为新的日出日落时间值,重新从第(2)步开始进行迭代计算,如果UTo和UT之差的绝对值小于0.007小时,则UT即为所求的格林威治日出日落时间;
* (12)上面的计算以度为单位,即180°=12小时,因此需要转化为以小时表示的时间,再加上所在的时区数Zone,即要计算地的日出日落时间为 :T=UT/15+Zone
* 上面的计算日出日落时间方法适用于小于北纬60°和南纬60°之间的区域,如果计算位置为西半球时,经度Long为负数。
*/
public class SunRiseSet {
private static int[] days_of_month_1 = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
private static int[] days_of_month_2 = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
private final static double h = -0.833;//日出日落时太阳的位置
private final static double UTo = 180.0;//上次计算的日落日出时间,初始迭代值180.0
//输入日期
//输入经纬度
//判断是否为闰年:若为闰年,返回1;若不是闰年,返回0
public static boolean leap_year(int year) {
if (((year % 400 == 0) || (year % 100 != 0) && (year % 4 == 0))) return true;
else return false;
}
//求从格林威治时间公元2000年1月1日到计算日天数days
public static int days(int year, int month, int date) {
int i, a = 0;
for (i = 2000; i < year; i++) {
if (leap_year(i)) a = a + 366;
else a = a + 365;
}
if (leap_year(year)) {
for (i = 0; i < month - 1; i++) {
a = a + days_of_month_2[i];
}
} else {
for (i = 0; i < month - 1; i++) {
a = a + days_of_month_1[i];
}
}
a = a + date;
return a;
}
//求格林威治时间公元2000年1月1日到计算日的世纪数t
public static double t_century(int days, double UTo) {
return ((double) days + UTo / 360) / 36525;
}
//求太阳的平黄径
public static double L_sun(double t_century) {
return (280.460 + 36000.770 * t_century);
}
//求太阳的平近点角
public static double G_sun(double t_century) {
return (357.528 + 35999.050 * t_century);
}
//求黄道经度
public static double ecliptic_longitude(double L_sun, double G_sun) {
return (L_sun + 1.915 * Math.sin(G_sun * Math.PI / 180) + 0.02 * Math.sin(2 * G_sun * Math.PI / 180));
}
//求地球倾角
public static double earth_tilt(double t_century) {
return (23.4393 - 0.0130 * t_century);
}
//求太阳偏差
public static double sun_deviation(double earth_tilt, double ecliptic_longitude) {
return (180 / Math.PI * Math.asin(Math.sin(Math.PI / 180 * earth_tilt) * Math.sin(Math.PI / 180 * ecliptic_longitude)));
}
//求格林威治时间的太阳时间角GHA
public static double GHA(double UTo, double G_sun, double ecliptic_longitude) {
return (UTo - 180 - 1.915 * Math.sin(G_sun * Math.PI / 180) - 0.02 * Math.sin(2 * G_sun * Math.PI / 180) + 2.466 * Math.sin(2 * ecliptic_longitude * Math.PI / 180) - 0.053 * Math.sin(4 * ecliptic_longitude * Math.PI / 180));
}
//求修正值e
public static double e(double h, double glat, double sun_deviation) {
return 180 / Math.PI * Math.acos((Math.sin(h * Math.PI / 180) - Math.sin(glat * Math.PI / 180) * Math.sin(sun_deviation * Math.PI / 180)) / (Math.cos(glat * Math.PI / 180) * Math.cos(sun_deviation * Math.PI / 180)));
}
//求日出时间
public static double UT_rise(double UTo, double GHA, double glong, double e) {
return (UTo - (GHA + glong + e));
}
//求日落时间
public static double UT_set(double UTo, double GHA, double glong, double e) {
return (UTo - (GHA + glong - e));
}
//判断并返回结果(日出)
public static double result_rise(double UT, double UTo, double glong, double glat, int year, int month, int date) {
double d;
if (UT >= UTo) d = UT - UTo;