- 博客(7)
- 资源 (2)
- 收藏
- 关注
原创 梯度下降
常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~高等数学1.导数定义:导数和微分的概念f′(x0)=limΔx→0 f(x0+Δx)−f(x0)Δxf'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)(1)或者:f′(.
2020-08-21 16:23:15 298
原创 pytorch---深度神经网络在MNIST数据集进行分类
import numpy as npimport torchfrom torchvision.datasets import mnistfrom torch import nnfrom torch.autograd import Variabletrain_set = mnist.MNIST('./data',train=True,download=True)test_set = mnist.MNIST('./data',train=False,download=True)a_data,.
2020-08-14 22:39:25 859
原创 Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normaliza论文复现、PaddlePaddle
百度顶会论文复现营,使用百度飞浆平台复现感兴趣的论文,方向有两个,GAN和视频分类,最近对GAN比较感兴趣,所以选择了GAN的有关论文。《Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normaliza》,利用 GAN 的新型无监督图像转换。不知道最后能不能复现出来,,引入: 图像到图像转换可以应用在很多计算机视觉任务,图像分割、图像修复、图像着色、图像超分辨率、图像风格(场景)变换等都是图像..
2020-08-06 19:47:37 586
原创 机器学习Python(四)
项目实践之文本分类实例采用20Newgroups的数据。数据集分为两部分,一部分用来训练模型,一部分是用来评估算法的新数据。这里采用20news-bydate数据集进行项目研究,这个数据集是按照日期进行排序的,并去掉了部分重复数据和header。 使用scikit-learn的loadfiles导入文档数据。利用机器学习对文本进行分类,与对数值特征进行分类最大的区别是,对文本进行分类时要先提取文本特征,提取到的文本特征属性是巨大的,有时会超过万个的特征属性。rom sklearn.featu.
2020-07-28 17:07:24 612
原创 机器学习Pyhton(三)
四、优化模型1.集成算法袋装(Bagging)算法 1)袋装决策树(Bagged Decision Trees) 2)随机森林(Randon Forest) 3)极端随机树(Extra Trees)提升(Boosting)算法 1)AdaBoost 2)随机梯度提升(Stochastic Gradient Boosting)投票(Voting)算法2.算法调参网格搜索优化参数 ...
2020-07-28 16:19:40 1333
原创 机器学习Python(二)
三、选择模型1.评估算法 要知道算法模型对未知的数据表现如何,最好的评估办法是,利用已经明确知道结果的数据运行生成的算法模型进行验证。必须使用与训练数据集完全不同的评估数据集来评价算法。分离训练数据集和评估数据集:将评估数据集和训练数据集完全分开,用训练数据集训练算法生成模型,采用评估数据集来评估算法模型。通常会将67%的数据作为训练集,将33%的数据作为评估数据集。(由于执行效率比较高,所以通常会用于算法的执行效率比较低或者有大量数据的时候) #分离训练数据集和评估数据集,评估逻辑回..
2020-07-24 23:19:18 428
原创 机器学习Python实践(一)
最近学习机器学习,用博客来记录一些笔记。如果涉及侵权联系删除。一、数据理解1.数据导入(CSV文件)使用标准Python类库导入数据#使用标准Python类库导入CSV文件from csv import readerimport numpy as npfilaname = 'pima_data.csv'with open(filaname,'rt') as raw_data: readers = reader(raw_data,delimiter=',') x = l
2020-07-23 17:53:31 643
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人