Collective Opinion Spam Detection: Bridging Review Networks and Metadata(2015KDD)

论文Collective Opinion Spam Detection: Bridging Review Networks and Metadata(2015KDD)

目标:检测水军和虚假评论

contributions:

  1. 提出SPEAGLE框架来做opinion spam,这个框架结合了relational data和元数据(metadata),即结合了图、行为和文本
  2. 论文中图由user-review-product图构成,三种类型的结点都有标签,user:水军与否,review:虚假与否,product:为被攻击目标与否。论文用图来做分类,用metadata来估计有关节点的类分布的先验知识。(我不把review放在中间的原因是目前还没在数据集里发现完全相同的review可以连接多个product,因此就不存在PRP路径)
  3. SPEAGLE是完全无监督的学习方法,如果有少部分标签,也可以转换为半监督学习(SPEAGLE+)
  4. 探究了我们提出的特征的有效性,设计出轻量级算法SPLITE(SPEAGLE-LIGHT),只用少量的特征

方法

fraudeagle

首先介绍作者前一篇论文提出的FRAUDEAGLE框架

该方法构建user-product二部图 G = ( V , E ± ) G=(V,E^{\pm}) G=(V,E±)表示N个用户节点 U = u 1 , . . . , u N U={u_1,...,u_N} U=u1,...,uN和M个商品结点 P = p 1 , . . . , P M P={p_1,...,P_M} P=p1,...,PM

( u i , p j , s ) ∈ E ± (u_i,p_j,s)\in E^{\pm} (ui,pj,s)E

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值