题目描述:
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
递归思路:
记录当前剩余的大小n,和已经有的完全平方数count
basecase为,当n等于0,返回count,当n小于0时,返回float(‘inf’)
其余情况求n尝试减去一个平方数,count+1的最小值
递归代码:
class Solution(object):
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
return self.process(n, 0)
def process(self, n, count):
if n == 0:
return count
if n < 0:
return float('inf')
i = 1
cur = []
while i ** 2 <= n:
cur.append(self.process(n - i ** 2, count + 1))
i += 1
return min(cur)
动态规划思路:
如果可以被整除,就是1
如果不能被整除,就是每次减去一个平方数,求最小次数
动态规划代码:
class Solution(object):
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
res = [0]
for i in range(1, n + 1):
j = int(i ** 0.5)
cur = float('inf')
while j > 0 and j ** 2 <= i:
cur = min(cur, res[i - j ** 2])
if cur == 0:
break
if cur == 1:
break
j -= 1
res.append(cur + 1)
return res[-1]