Problem Description
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。本题知识点:贪心
Mentality
和上一题相比,多了一个条件:可以跳n级。也就是递归函数变成了:
f(n)=f(n-1)+f(n-2)+f(n-3)+…+f(2)+f(1)+1
最后一个加一是因为一次性跳n级,即只有一种跳法。
于是可以对递归的斐波那契数列进行修改。
如下图为例子:
Code (C++)
class Solution {
public:
int jumpFloorII(int number) {
if(number<=2)
return number;
int target(0);
for(int i=number-1; i>0; i--)
target+=jumpFloorII(i);
return target+1;
}
};
已通过所有的测试用例,欢迎指正批评(´▽`ʃ♡ƪ)