最近在进行相关资料的搜集,在优化调度管理方向上,阅读了一片论文,摘要一些关键的知识点和大体思路。
文章:基于遗传算法和粒子群算法的微电网日前储能系统调度优化
原文:Optimization of Day-Ahead Energy Storage System Scheduling in Microgrid Using Genetic Algorithm and Particle Swarm Optimization
仅作入门了解!!!
摘要:利用遗传算法(GA)和粒子群算法(PSO),提出了微电网储能系统的日前调度策略。该调度策略的目标是使动态定价下微电网用户所支付的成本最小化。定义了优化问题的目标函数,给出了目标函数的搜索空间,研究了目标函数的结构性质。证明了搜索空间具有至少50 (Bc -Bd+ 1)的放大倍数,其中Bc 和Bd分别达到ESS每小时(以百分比计算)的最大充放电深度。在一个涉及三种不同规模微电网的负荷、发电量和电价预测的仿真中,我们得到了ESS调度,与基于网络功率的算法得到的ESS调度相比,ESS调度的平均成本降低了11.31%(使用GA)和14.31%(使用PSO)。
微电网知识科普:
电网是一个将电力从生产者传送到消费者的互联网络。传统电网只能单向传输电力,即从生产者到消费者,利用现代智能技术[1],正迅速过渡到双向潮流系统。智能电网使用双向电力传输和信息来创建一个自动化的分布式能源传输网络[2]。智能电网的发展有望通过智能微电网[3]的即插即用集成实现。
微电网可以看作是电网[4]的缩小版。美国能源部将微电网定义为:
翻译过来为:在明确定义的电边界内的一组相互连接的负荷和分布式能源,相对于电网起单一可控实体的作用。
带来的好处:微电网为智能电网技术的自下而上整合提供了一种可行的途径,因为传统电网的彻底改造是艰巨的。它还将可再生能源如太阳能电池板和风力涡轮机结合起来。因此,微电网还集成了 能量存储系统(ESS) 来存储这种可再生能源。
ESS主要用于捕获一次产生的能量,并在以后使用它。微电网ESS的一个重要方面是,由于频繁的充放电循环[6],ESS随时间而降低。为了使ESS的寿命最大化,微电网可以采取以下预防措施:
1.保持最佳充电状态。传统的储能规范规定锂离子电池在10-20%和80-90%的**荷电状态(SoC)**之间的最大功能。高于或低于这些阈值可能会减少电池的生命周期,也可能会妨碍功率输出。
2.极限充放电深度。“充放电深度”是一个真实的数值,指的是在一段时间内循环进出电池的能量,用电池总容量的百分比表示。大多数电池在一个时间间隔内充电/放电的量都有物理限制。然而,为了最大限度地延长电池寿命,建议保持在这个值以下。例如,在一小时内,电池的最大放电深度可能等于30%。任何超过这个值的放电都可能损坏电池。
应用好处:电力动态定价作为一种引起调峰和平衡负荷的方法越来越受到人们的关注,这种方法通常是通过在高需求时期对电力定价更高,从而激励消费者在那个时候减少他们的需求并重塑负荷曲线。降低需求峰值和使需求曲线平坦有利于生产商,因为降低了整个工厂和资本成本要求。动态定价的一种形式是分时电价,单位电力的价格取决于一天中的时间。
消费者通常会找到创新的方法来利用这些可变的关税。其中一种方法是在电价较低时使用ESS存储能量,在电价较高时使用存储的能量。这需要ESS的优化调度,即确定ESS何时充放电。利用动态定价的另一种方法是在一天内将某些负载转移到不同的时间段,通常是在电网价格较低的时间段。这种需求响应策略被称为负荷转移,许多论文已经讨论过这个话题(这也是一个复杂的优化问题)。
本文将对前一个问题进行研究,即在动态定价的微电网中优化ESS计划,使用户支付的总成本最小化。具体地说,我们应用遗传算法[11]和粒子群算法[12]对微电网进行了一天前ESS计划优化,该微电网接入了传统单向潮流电网,对微电网施加了动态定价。该优化问题需要对负荷、发电量和电价进行一天前每小时的预测。尽管负荷和发电量的预测是一项艰巨的任务,但许多工作已经提出了各种方法来进行合理的预测。
实验结果
我们获得了从[48]开始24小时内的每小时负荷(L)、发电量(G)和电网价格(A)概况。在这个数据集中,有三种不同大小的微电网——8 hmes、20户和40户——电池的累积尺寸分别为43.44kWh、108.6kWh和217.2kWh。在这个模拟中,我们假设累积电池在每个微网格中形成一个集中的ESS。我们还假设每个ESS的SoC在一天开始时为30%。最大放电深度Bd为23(即SoC每小时最多可下降23%)。同样,最大装药深度Bc是+23。因此,搜索空间包含100(Bc -Bd+ 1)24= 470024 2288个元素。图3显示了微电网中有8个家庭的家庭1的预测数据如何变化。
在我们使用遗传算法和粒子群算法查看结果之前,我们需要一个标准来进行比较。为此,我们使用网络力量基于算法(NPBA), ESS在不考虑电价的情况下充电或放电以适应负荷与发电量的差异。例如,在某些情况下,节约电池电量以备以后电网价格较高时使用,而不是马上使用。使用NPBA得到的数据集中三个微网的总成本如表1所示。
最后结果:
结论:
考虑到未来动态电价的可能性,本文提出了一种通过优化微电网ESS调度来降低用户支付总成本的算法。为了更好地模拟真实场景,我们还考虑了电池最大充放电深度等限制条件。我们首先从数学上定义问题陈述。然后定义了搜索空间,研究了搜索空间的结构性质。我们证明了我们的搜索空间至少有50 (Bc -Bd+ 1)的放大,其中Bc 和Bd分别是ESS的最大充放电深度。然后,利用遗传算法和粒子群算法描述了该优化问题的算法方法。然后应用该算法对[48]的数据进行预测。我们发现,与基于网络功率的算法相比,遗传算法和粒子群算法都表现得很好。然而,在去除动量因子的PSO中,成本降低幅度最大,达到14%以上。这种在较长时间内降低成本的做法,可以更好地激励人们转向智能电网和可再生能源基础设施。我们期待看到其他仿生算法在该搜索空间上的表现。