
目标检测YOLO改进指南
文章平均质量分 93
🔥🔥🔥专栏名:目标检测YOLO改进指南📚
本专栏为改进目标检测YOLO系列创新点·改进模型🚀·均为全网独家首发,文章质量较高,订阅专栏后该专栏所有文章可看,订阅后有专栏相关的疑问可以私信博主·已经有不少读者和我反应·专栏的创新点·在自己数据集涨点了!
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
芒果学AI
YOLOv8项目Contributor,算法工程师, 原创专栏YOLOv12、YOLO11、YOLOv10、YOLOv8、YOLOv5、YOLOv7改进通用.持续更新中.包含<改进代码和改进教程>
认准官方CSDN芒果专栏, 订阅专栏的读者可以私信博主加群,咨询可添加QQ:2434798737
展开
-
改进YOLOv7系列:YOLOv7_最新MobileOne重参数化结构,苹果最新移动端高效Backbone主干网络模型,超轻量型架构
YOLOv7 +MobileOne苹果最新移动端高效Backbone主干网络模型,超轻量型架构,移动端仅需1ms推理原创 2022-10-10 21:03:49 · 7662 阅读 · 0 评论 -
CSDN独家全网首发专栏 | 《目标检测YOLO改进指南》改进涨点推荐,人工智能专家老师联袂推荐
目标检测YOLO改进指南专栏目录 ,博文均为全网独家首发。原创 2022-09-29 15:28:12 · 9087 阅读 · 2 评论 -
改进YOLOv7系列:结合最新即插即用的动态卷积ODConv,有效涨点
提出了全维动态卷积(ODConv),一种更通用但更优雅的动态卷积设计,以推进这一研究方向原创 2022-09-28 21:28:35 · 15953 阅读 · 1 评论 -
YOLOv7改进主干CFPNet系列:全网首发结合最新Centralized Feature Pyramid集中特征金字塔,测试私有数据集涨点,通过COCO数据集验证强势涨点
YOLOv7结合一种空间显式视觉中心(Explicit Visual Center)方案原创 2022-10-08 22:41:47 · 11958 阅读 · 2 评论 -
YOLOv5、YOLOv8改进结构系列:结合最新ICLR2022顶会的即插即用的动态卷积ODConv,全维度动态卷积有效提升精度,打造高性能检测
YOLOv5结合最新ICLR2022顶会的即插即用的动态卷积ODConv,全维度动态卷积有效提升精度,打造高性能检测原创 2022-11-13 15:09:26 · 5709 阅读 · 0 评论 -
YOLOv5改进Shuffle主干系列:高效结合ShuffleNet V2主干网络,高效CNN架构设计的实用指南
设计一个高效网络时应该遵循以下几点建议:使用平衡性的卷积(还有通道宽度)、谨慎使用分组卷积的数量、降低网络分支的数量、降低元素级操作次数、同时在实际使用也应该注意到操作平台的影响。原创 2022-11-11 13:00:59 · 7617 阅读 · 4 评论 -
YOLOv7改进注意力机制系列:最新结合即插即用CA(Coordinate attention) 注意力机制(适用于YOLOv5),CVPR 2021 顶会助力分类检测涨点!
在本文中,将YOLO系列模型结合一种新的移动网络注意机制,将位置信息嵌入到通道注意中,称之为“坐标注意力”。与通过 2D 全局池化将特征张量转换为单个特征向量的通道注意不同,坐标注意将通道注意分解为两个 1D 特征编码过程,分别沿两个空间方向聚合特征。原创 2022-11-06 15:43:55 · 22452 阅读 · 15 评论 -
YOLOv5、YOLOv7改进主干系列:首发最新结合Global Context Modeling结构(附代码),目标检测高效涨点
基于 YOLOv7网络模型结合Non-local Networks and Attention结构,可以有效地对全局上下文进行建模。轻量级特性允许我们将其应用于骨干网络中的多个层以构建全局上下文网络原创 2022-11-02 18:52:43 · 5790 阅读 · 0 评论 -
YOLOv5、YOLOv7、YOLOv8改进结构系列: 最新结合用于小目标的新CNN卷积构建块
YOLO代码实践|结合 新 CNN 构建块来代替每个跨步卷积层和每个池化层原创 2022-10-30 16:35:57 · 19235 阅读 · 47 评论 -
YOLOv7改进Transformer检测头系列:首发最新结合Transformer结构新增检测层,让YOLO目标检测任务中的目标无处遁形
YOLOv7新增Transformer小目标检测层(Swin、SwinV2、BotNet、Transformer等),包含多种X-Transformer小目标检测网络设计,通过探索不同Self-Attention的预测潜力 新增X-Transformer 结构检测层。`让YOLO目标检测任务中的小目标无处遁形`,打造高性能、轻量级检测器。原创 2022-10-25 23:50:18 · 16060 阅读 · 0 评论 -
YOLOv5改进Swin系列:增加Swin-Transformer小目标检测头
增加一个SwinTransformer检测头结构原创 2022-10-25 20:24:21 · 16083 阅读 · 19 评论 -
YOLOv7改进ASFF系列:最新结合Adaptively Spatial Feature Fusion自适应空间特征融合结构(内附代码),提高特征尺度不变性
YOLO系列结合一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合原创 2022-10-22 06:30:00 · 9981 阅读 · 1 评论 -
YOLOv5、YOLOv8改进ELAN系列:首发结合最新efficient Layer Aggregation Networks结构(内附源代码),高效的聚合网络设计,提升性能
结合最新Extended efficient Layer Aggregation Networks结构,高效的聚合网络设计,打造高性能、轻量级检测器原创 2022-10-20 12:02:13 · 8654 阅读 · 0 评论 -
YOLOv5、YOLOv8改进主干RTMDet论文系列:全网首发结合最新RTMDet论文的CSPNeXt主干结构,高性能,低延时的单阶段目标检测器主干,通过COCO数据集验证高效涨点
将最新的CSPNeXt主干结构 结合在YOLOv5、YOLOv7等检测其中,提高检测器性能,COCO数据集有效涨点模块原创 2022-10-14 21:57:31 · 9728 阅读 · 0 评论 -
YOLOv7改进结构系列:最新结合DO-DConv卷积提高性能涨点,打造高性能检测器
YOLOv7、YOLOv5 结合 Slim范式+DO-DConv卷积 ,提高 CNN 在许多经典视觉任务(例如目标检测)上的性能原创 2022-10-13 10:50:06 · 9995 阅读 · 0 评论 -
芒果YOLOv5改进39:主干Backbone篇之RepLKNet:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点
CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点高效!原创 2022-10-07 18:11:04 · 7758 阅读 · 1 评论 -
YOLOv5改进CFPNet系列:最新论文|首发结合最新Centralized Feature Pyramid集中特征金字塔,通过COCO数据集验证强势涨点
基于 YOLOv5 最新集中特征金字塔Centralized Feature Pyramid 高效涨点改进原创 2022-09-29 15:27:13 · 3456 阅读 · 0 评论 -
YOLOv7改进RTMDet主干系列:最新模型|首发结合最新CSPNeXt主干结构,高性能,低延时的单阶段目标检测器主干,通过COCO数据集验证高效涨点
基于YOLOv7、YOLOv7-Tiny 结合`最新CSPNeXtL主干结构` 高效涨点改进原创 2022-09-29 15:23:20 · 3606 阅读 · 0 评论 -
YOLOv7改进主干RepLKNet系列:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点高效
YOLOv7 CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点高效!原创 2022-09-29 15:03:07 · 3010 阅读 · 0 评论 -
改进YOLOv7系列:当YOLO遇见ACmix结构,自注意力和卷积集成,Self-Attention和Convolution的融合,性能高效涨点
当YOLO遇见ACmix结构,自注意力和卷积集成,Self-Attention和Convolution的融合,性能高效涨点原创 2022-09-29 14:49:04 · 6556 阅读 · 0 评论 -
改进YOLOv5:29.YOLOv5 结合 极简又强大的RepVGG 重参数化模型结构
目标检测科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数原创 2022-09-07 08:30:00 · 15429 阅读 · 28 评论 -
改进YOLOv7系列:26.CVPR2022. ConvNeXt结合YOLOv7 | 基于ConvNeXt结构 构建 CNeB 模块
目标检测科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数原创 2022-09-06 21:00:00 · 9057 阅读 · 26 评论 -
改进YOLOv7系列:最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互,新增 HorBc结构
目标检测科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数原创 2022-08-31 16:28:27 · 9668 阅读 · 45 评论 -
改进YOLOv5系列:最新ConvNeXt结合YOLO | CVPR2022 多种搭配,即插即用 | Backbone主干CNN模型
最新ConvNeXt结合YOLO | CVPR2022 多种搭配,即插即用 | Backbone主干CNN模型原创 2022-08-21 20:11:57 · 12852 阅读 · 23 评论 -
改进YOLOv5系列:10.最新HorNet结合YOLO应用首发! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互高效
目标检测科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数原创 2022-08-19 23:11:51 · 17227 阅读 · 83 评论 -
改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成
当YOLO遇见ACmix结构,自注意力和卷积集成,Self-Attention和Convolution的融合,高效涨点原创 2022-08-12 13:55:43 · 11238 阅读 · 31 评论 -
改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改,超轻量型架构,移动端仅需1ms推理!苹果最新移动端高效主干网络
目标检测科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数原创 2022-08-05 20:51:19 · 17069 阅读 · 62 评论