NOIP2016愤怒的小鸟 题解报告 【状压DP】

本文介绍了一款游戏中的数学挑战,玩家需要通过发射小鸟来消灭小猪,算法使用状压DP来找出最少需要发射多少只小鸟以消灭所有目标。文章详细解析了如何通过计算两点间的抛物线方程,以及如何利用二进制状态压缩动态规划求解最优方案。
摘要由CSDN通过智能技术生成

题目描述

Kiana最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax^2+bxy=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。

如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。

例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x^2+4xy=x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

输入输出格式

输入格式:

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果m=0,表示Kiana输入了一个没有任何作用的指令。

如果m=1,则这个关卡将会满足:至多用\left \lceil \frac{n}{3} + 1 \right \rceil3n+1只小鸟即可消灭所有小猪。

如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少\left \lfloor \frac{n}{3} \right \rfloor3n只小猪。

保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

上文中,符号\left \lceil x \right \rceilx\left \lfloor x \right \rfloorx分别表示对c向上取整和向下取整

输出格式:

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量

输入输出样例

输入样例#1:
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
输出样例#1:
1
1
输入样例#2:
3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00
输出样例#2:
2
2
3
输入样例#3:
1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99
输出样例#3:
6

说明

【样例解释1】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00,3.00),只需发射一只飞行轨迹为y = -x^2 + 4x的小鸟即可消灭它们。

第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x^2 + 6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

【数据范围】









题解

我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线。通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2*x1)/(x1*x1*x2-x1*x2*x2),b=(y1*x2*x2-y2*x1*x1)/(x1*x2*x2-x1*x1*x2)

由于猪很少,我们可以枚举出所有的抛物线,以及确定每一条抛物线能击中的猪

怎么确定射中所有猪的最优解呢?

状压DP
我们将猪的存活状态用二进制表示。
例如有8只猪,00000000表示8只猪都存活,00010001表示第1只和第5只挂掉了
这样,以存活状态作为下标,建立一个f[n]表示状态n的最优解
我们将每条抛物线射中的猪也用二进制表示。
利用位运算,对于抛物线s,f[n|s]=min(f[n|s],f[n]+1);
f[(1<<n)-1]就是答案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long int
using namespace std;
const double E=1e-9;
const int maxn=1000005,INF=2000000000,P=1000000007;

inline int read(){
	int out=0,flag=1;char c=getchar();
	while(c<48||c>57) {if(c=='-') flag=-1;c=getchar();}
	while(c>=48&&c<=57){out=out*10+c-48;c=getchar();}
	return out*flag;
}

struct node{
	double x,y;
}p[20];

double a,b;
inline void cal(int i,int j){
	a=(p[i].y*p[j].x-p[j].y*p[i].x)/(p[i].x*p[i].x*p[j].x-p[i].x*p[j].x*p[j].x);
	b=(p[i].y*p[j].x*p[j].x-p[j].y*p[i].x*p[i].x)/(p[i].x*p[j].x*p[j].x-p[i].x*p[i].x*p[j].x);
}

inline bool isok(int i){
	return fabs(a*p[i].x*p[i].x+b*p[i].x-p[i].y)<E;
}

int v[maxn],vi=0,f[maxn],n,m;

int main(){
	int T=read();
	while(T--){
		vi=0;fill(f,f+maxn,INF);
		n=read();m=read();
		for(int i=1;i<=n;i++) {scanf("%lf%lf",&p[i].x,&p[i].y);v[++vi]=1<<(i-1);}
		for(int i=1;i<=n;i++)
			for(int j=i+1;j<=n;j++){
				cal(i,j);
				if(a>=0||b<0) continue;
				int s=0;
				for(int k=1;k<=n;k++) if(isok(k)) s+=(1<<(k-1));
				v[++vi]=s;
			}
		f[0]=0;
		int End=(1<<n)-1;
		for(int i=0;i<=End;i++)
			for(int j=1;j<=vi;j++)
				f[i|v[j]]=min(f[i|v[j]],f[i]+1);
		printf("%d\n",f[End]);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值