sparksql源码解析一:

本文详细介绍了Spark SQL如何使用ANTLR解析器将SQL语句转化为抽象语法树(AST),涉及SqlBase.g4规则、SqlBaseBaseListener和SqlBaseBaseVisitor,以及visitor模式在AST构建中的应用过程。

parseDriver类调用parser的类

parser调用sqlbaseParser的singleStatement方法,利用anltr4里面的singleStatement来

目前主流的sql解析器有 anltr和calcite,如果使用选择使用anltr,SQL进行查询,首先需要将SQL解析成spark中的抽象语法树(AST)。在spark中是借助开源的antlr4库来解析的。Spark SQL的语法规则文件是:SqlBase.g4。

在生成的文件中SqlBaseBaseListener和SqlBaseBaseVistor分别代表两种遍历AST的方法,在spark中主要用了visitor模式。

接下来,将看一下spark中,当使用spark.sql("select *** from ...")时,sql怎么解析成spark内部的AST的?

1,用户调用的spark.sql的入口是sparkSession中sql函数,该函数最终返回DataFrame(DataSet[Row]),sql的解析的过程主要是在

目前主流的sql解析器有 anltr和calcite,如果使用选择使用anltr,SQL进行查询,首先需要将SQL解析成spark中的抽象语法树(AST)。在spark中是借助开源的antlr4库来解析的。Spark SQL的语法规则文件是:SqlBase.g4。

在生成的文件中SqlBaseBaseListener和SqlBaseBaseVistor分别代表两种遍历AST的方法,在spark中主要用了visitor模式。

接下来,将看一下spark中,当使用spark.sql("select *** from ...")时,sql怎么解析成spark内部的AST的?

1,用户调用的spark.sql的入口是sparkSession中sql函数,该函数最终返回DataFrame(DataSet[Row]),sql的解析的过程主要是在

sessionState.sqlParser.parsePlan(sqlText)中发生的。
def sql(sqlText: String): DataFrame = {
  Dataset.ofRows(self, sessionState.sqlParser.parsePlan(sqlText))
}
2,调用到parsePlan,将调用parse函数,传入的两个参数分为:sql语句,sqlBaseParse到LogicalPlan的一个函数。
override def parsePlan(sqlText: String): LogicalPlan = parse(sqlText) { parser =>
  astBuilder.visitSingleStatement(parser.singleStatement()) match {
    case plan: LogicalPlan => plan
    case _ =>
      val position = Origin(None, None)
      throw new ParseException(Option(sqlText), "Unsupported SQL statement", position, position)
  }
}

3,在parse函数中,首先构造SqlBaseLexer词法分析器,接着构造Token流,最终SqlBaseParser对象,然后一次尝试用不同的模式去进行解析。最终将执行parsePlan中传入的函数。

4,在步骤2中,astBuilder是SparkSqlAstBuilder的实例,在将Antlr中的匹配树转换成unresolved logical plan中,它起着桥梁作用。

astBuilder.visitSingleStatement使用visitor模式,开始匹配SqlBase.g4中sql的入口匹配规则:
singleStatement
 : statement EOF
 ;

递归的遍历statement,以及其后的各个节点。在匹配过程中,碰到叶子节点,就将构造Logical Plan中对应的TreeNode。如当匹配到

singleTableIdentifier
 : tableIdentifier EOF
 ;

规则时(单表的标识符)。即调用的函数如下:

override def visitSingleTableIdentifier(
    ctx: SingleTableIdentifierContext): TableIdentifier = withOrigin(ctx) {
  visitTableIdentifier(ctx.tableIdentifier)
}

可以看到将递归遍历对应的tableIdentifier,tableIdentifier的定义和遍历规则如下:

tableIdentifier
 : (db=identifier '.')? table=identifier
 ;
override def visitTableIdentifier(
    ctx: TableIdentifierContext): TableIdentifier = withOrigin(ctx) {
  TableIdentifier(ctx.table.getText, Option(ctx.db).map(_.getText))
}

可以看到当匹配到tableIdentifier,将直接生成TableIdentifier对象,而该对象是TreeNode的一种。经过类似以上的过程,匹配结束后整个spark内部的抽象语法树也就建立起来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值