机器学习
文章平均质量分 52
Leo传久
这个作者很懒,什么都没留下…
展开
-
Google机器学习课程笔记(1)
机器学习主要术语监督式学习:机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测。机器学习的基本术语:标签:标签是我们要预测的事物,即简单线性回归中的 y 变量。标签可以是小麦未来的价格、图片中显示的动物品种、音频剪辑的含义或任何事物。特征:特征是输入变量,即简单线性回归中的 x 变量。简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征,按如下方式...原创 2018-04-08 22:35:08 · 297 阅读 · 0 评论 -
机器学习之线性回归
人们知道,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系。首先建议您将数据绘制成图表,了解下数据的分布情况:图 1. 每分钟的鸣叫声与温度(摄氏度)的关系。毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而...转载 2018-04-10 17:26:15 · 178 阅读 · 0 评论 -
深入了解机器学习之训练与损失
简单来说,训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型;这一过程称为经验风险最小化。损失是对糟糕预测的惩罚。也就是说,损失是一个数值,表示对于单个样本而言模型预测的准确程度。如果模型的预测完全准确,则损失为零,否则损失会较大。训练模型的目标是从所有样本中找到一组平均损失“较小”的权...转载 2018-04-10 17:37:33 · 2637 阅读 · 0 评论 -
机器学习之降低损失(Reducing Loss)
为了训练模型,我们需要一种可降低模型损失的好方法。迭代方法是一种广泛用于降低损失的方法。一、迭代方法:一种迭代试错,优化模型的方法机器学习算法用于训练模型的迭代试错(迭代方法)过程:简单来说,迭代方法就是将模型预测值与实际值之间的误差值反馈给模型,让模型不断改进,误差值会越来越小,即模型预测的会越来越精确。在训练机器学习模型时,首先对权重和偏差进行初始猜测,然后反复调整这些猜测,直到获得损失可能最...原创 2018-04-11 21:46:36 · 7586 阅读 · 0 评论 -
机器学习Google课程学习笔记(全)
对机器学习很感兴趣,这段时间在学Google机器学习速成课程,免费的学习视频,很适合入门。学习时喜欢用有道云笔记来做笔记,下图是我在学习时做的笔记标题截图;一篇篇复制到博客里面很麻烦,有些格式还得转换,因此决定以链接的形式分享。如果有需要的话可以将下面链接复制到浏览器进行搜索,就可进入到笔记查看页面查看所有笔记。如果有有道云账号的话,还可以下载到自己的笔记里面,随时可以查阅。笔记里有Google机...原创 2018-04-24 17:12:49 · 480 阅读 · 0 评论 -
Sklearn库中Logistic Regression函数各个参数总结
Logistics Regression参数名称 含义 函数调用形式 LogisticRegression(penalty='l2',dual=False,tol=1e-4,C=1.0,fit_intercept=True,intercept_scaling=1,class_weight=None,rando...原创 2018-09-08 21:21:54 · 25128 阅读 · 1 评论