问题:输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。
通常解决办法:可以使用各种排序算法将n个整数从小到大排序之后,前k个数就是所求的结果。但如果是海量数据中查找出最小的k个数,那么这种办法的效率就很低了,而且这也不是面试官想要的答案。
大根堆概念:堆本质就是一棵完全二叉树,底层实现是数组。堆的根节点保存在数组索引为1的位置,然后每个节点的子节点在数组中的位置用公式表示就是2i和2i+1表示,大根堆就是父节点必须大于子节点的堆。
思路:创建一个大小为k的数组,将n中的前k个数存入数组,然后利用堆排序将数组初始化为大根堆,之后遍历剩余的n-k个整数,若遍历的数小于数组的最大值,则将此数与最大值替换,最终得出的数组即为最小的k个数。
代码及注释:
import java.util.ArrayList;
public class Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
ArrayList<Integer> list = new ArrayList<>();
if (input == null || input.length == 0 || k > input.length || k == 0)
return list;
if(input.length == 1){
list.add(input[0]);
return list;
}
//数组下标0的位置作为哨兵,不存储数据
int[] arr = new int[k + 1];
//初始化大根堆数组
for (int i = 1; i < k + 1; i++)
arr[i] = input[i - 1];
//从最后一棵子树开始,自底向上构造大根堆
for (int i = (arr.length - 1) / 2; i > 0; i--)
adjustHeap(arr, i);
for (int i = k; i < input.length; i++) {
//如果遍历到的数小于arr数组的最大值,则将此数与其最大值替换
if (input[i] < arr[1]) {
arr[1] = input[i];
//将改变了根节点的二叉树继续调整为大根堆
adjustHeap(arr, 1);
}
}
for (int i = 1; i < arr.length; i++) {
list.add(arr[i]);
}
return list;
}
//堆排序中对一个子二叉树进行堆排序
public void adjustHeap(int[] arr, int top) {
arr[0] = arr[top];//哨兵
for (int i = 2 * top; i < arr.length; i *= 2) {
//i<arr.length-1用来排除最后一个节点是左子树的情况,若i是最后一个节点,则i+1就会溢出
if (i < arr.length - 1 && arr[i] < arr[i + 1])
//取较大的子结点的下标,i++即右子树
i++;
if (arr[0] >= arr[i])
//父节点比子节点大,没必要调整了
break;
else {
arr[top] = arr[i];
//往下继续调整
top = i;
}
}
arr[top] = arr[0];
}
}