一、RDD引入只IO流
1.1 IO流
1.2 IO流和RDD之间的关系
二、什么是RDD
- RDD,弹性分布式数据集,是Spark中最基本的数据抽象,代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
- 弹性
- 存储的弹性:内存与磁盘的自动切换
- 容错的弹性:数据丢失可以自动恢复
- 计算的弹性:计算出错重试机制
- 分片的弹性:可根据需要重新分片
- 分布式
- 数据存储在大数据集群不同节点上
- 数据集
- RDD封装了计算逻辑,并不保存数据
- 数据抽象
- RDD是一个抽象类,需要子类具体实现
- 不可变
- RDD封装了计算逻辑,是不可以改变的,想要改变,只能产生新的RDD,在新的RDD里面封装计算逻辑
- 可分区、并行计算
- 弹性
三、RDD特性
- A list of paritions:多个分区,分区可以看成是数据集的基本组成单位。对于RDD来说,每个分区都会被一个计算任务处理,并决定了并行计算的粒度。用户可以在创建RDD时指定RDD的分区数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。每个分配的存储是由BlockManager 实现的, 每个分区都会被逻辑映射成BlockManager 的一个 Block,,而这个 Block 会被一个 Task 负责计算。
- A function for computing each split:计算每个切片(分区)的函数,Spark 中 RDD 的计算是以分片为单位的,每个 RDD 都会实现compute函数以达到这个目的。
- A list of dependencies on other RDDs:与其他RDD之间的依赖关系。RDD 的每次转换都会生成一个新的 RDD, 所以 RDD 之间会形成类似于流水线一样的前后依赖关系。 在部分分区数据丢失时,Spark 可以通过这个依赖关系重新计算丢失的分区数据, 而不是对 RDD 的所有分区进行重新计算。
- Optionally, a Partitioner for key-value RDDs(e.g. to say that the RDD is hash-partitioned):对存储键值对的RDD,还有一个可选的分区器,只有对于 key-value的 RDD,才会有 Partitioner, 非key-value的 RDD 的 Partitioner 的值是 None;Partitiner 不但决定了 RDD 的本区数量, 也决定了 parent RDD Shuffle 输出时的分区数量。
- Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):存储每个切片优先(preferred location)位置的列表比如对于一个 HDFS 文件来说, 这个列表保存的就是每个 Partition 所在文件块的位置. 按照“移动数据不如移动计算”的理念, Spark 在进行任务调度的时候, 会尽可能地将计算任务分配到其所要处理数据块的存储位置。