数据结构与算法
编程的最终目的只有一个:对数据进行操作和处理
- 术之尽头炁体源流
- 编程尽头数据结构
数据结构与算法的本质就是一门专门研究数据如何组织、存储和操作的科目
系统、语言、框架源码随处可见数据结构与算法
- 无论是操作系统(Windows、Mac OS)本身,还是我们所使用的编程语言(JavaScript、Java、C++、Python等等)还是我们在平时应用程序中用到的框架(Vue、React、Spring、Flask等等),它们的底层实现到处都是数据结构与算法,所以你要想学习一些底层的知识或者某一个框架的源码(比如 Vue、React的源码)是必须要掌握数据结构与算法的
- 以前端为例:框架中大量使用到了栈结构、队列结构等来解决问题(比如之前框架源码时经常看到这些数据结构,Vue 源码、React 源码、Webpack 源码中可以看到队列、栈结构、队列结构等来解决问题,Webpack 中还可以看到很多 Graph 图结构)
- 实现语言或者引擎本身也需要大量的数据结构:哈希表结构、队列结构(微任务队列、宏任务队列),前端无处不在的数据结构:DOM Tree(树结构)、AST(抽象语法树)
因为对于很多企业来说,想要短时间考察一个人的能力以及未来的潜力,数据结构与算法是非常重要的指标,也会成为它们的硬性条件
- 对于可以将数据结构与算法掌握很好的开发人员来说,通常对于业务的把握肯定是没有问题的
- 并且对于系统的设计也会更加合理,可以写出更加高效的代码
数据结构
- 数据结构是数据对象,以及存在于该对象的实例和组成实例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出————《数据结构、算法与应用》
- 数据结构是 ADT(抽象数据类型 Abstract Data Type)的物理实现————《数据结构与算法分析》
- 数据结构(data structure)是计算机中存储、组织数据的方式。通常情况下,精心选择的数据结构可以带来最优效率的算法————中文维基百科
图书摆放规则
- 随便放
- 插入操作:哪里有空放哪里,一步到位
- 查找操作:找某本书,累死…
- 按照书名的拼音字母顺序摆放
- 插入操作:新进一本《阿Q正传》、《理想国》,按照字母顺序找到位置,插入
- 查找操作:二分查找法
- 把书架划分成几个区域,按照类别存放,类别中按照字母顺序
- 插入操作:先定类别,二分查找确定位置,移出空位
- 查找操作:先定类别,再二分查找
常见数据结构
- 数组(Array)
- 栈结构(Stack)
- 队列(Queue)
- 链表(LinkedList)
- 图结构(Graph)
- 散列表(Hash)
- 树结构(Tree)
- 堆结构(Heap)
算法
解决问题的过程中,不仅仅数据的存储方式会影响效率,算法的优劣也会影响效率
算法
- 一个有限的指令集,每条指令的描述不依赖于语言
- 接受一些输入(有些情况下不需要输入)
- 产生输出
- 一定在有限步骤之后终止
生活中的算法
-
找出线缆出题的地方:
- 假如上海和杭州之间有一条高架线,高架线长度是 100000 米,有一天高架线中有其中一米出现了故障
- 请你想出一种算法,可以快速定位到出问题的地方
-
线性查找:
- 从上海的起点开始一米一米的排查,最终一定能找到出问题的线段
- 但是如果线段在另一头,我们需要排查 100000 次,这是最坏的情况,平均需要 50000 次
-
二分查找:
- 从中间位置开始排查,看一下问题出在上海到中间位置,还是中间到杭州的位置
- 查找对应的问题后,再从中间位置分开,重新锁定一般的路程
- 最坏的情况,需要多少次可以排查完呢?最坏的情况是20次就可以找到出问题的地方
- 怎么计算出来的呢?log(100000,2),以 2 为底,100000 的对数 ≈ 20
-
结论:
你会发现,解决问题的办法有很多,但是好的算法对比于差的算法,效率天囊之别
线性结构
线性结构(Linear List)是由 n(n>=0)个数据元素(结点)a[0]、a[1]、a[2]…a[n-1]组成的有限序列
- 数据元素的个数 n 定义为表的长度=
list.length()
(list.length()=0
时称为空表) - 将非空的线性表(n>=1)记作:(a[0]、a[1]、a[2]…a[n-1])
- 数据元素 a[i](0<=i<=n-1)只是个抽象符号,其具体含义在不同情况下可以不同
上面是维基百科对于线性结构的定义,有一点点抽象,其实我们只需要记住几个常见的线性结构即可
- 数据结构(Array)
- 栈结构(Stack)
- 队列结构(Queue)
- 链表结构(LinkedList)
数组
- 几乎每种编程语言都会提供一种原生数据结构
- 并且我们可以借助数组结构来实现其他的数据结构,比如栈(Stack)、队列(Queue)、堆(Heap)
通常数组的内存是连续的,所以数组在知道下标值的情况下,访问效率是非常高的
栈
- 栈也是一种非常常见的数据结构,并且在程序中的应用非常广泛
- 数组
- 我们知道数组是一种 线性结构,并且可以在数组的 任意位置 插入和删除数据
- 但是有时候,我们为了实现某些功能,必须对这种 任意性 加以 限制
- 而 栈和队列 就是比较常见的受限的线性结构
栈(Stack),它是一种受限的数据结构,后进先出(LIFO)
- 其限制是仅允许在 表的一端 进行插入和删除运算。这一端被称为 栈顶,相对地,把另一端称为 栈底
- LIFO(last in first out)表示就是后进入的元素,第一个弹出栈空间。类似于自动餐托盘,最后放上的托盘,往往先把它拿出去使用
- 向一个栈插入新元素又称作 进栈、入栈或压栈,它是把新元素放到栈顶元素的上面,使之成为栈顶元素
- 从一个栈删除元素又称作出 栈或退栈,它是把栈顶元素删除掉,使其相邻的元素成为新的栈顶元素
题目
有六个元素 6、5、4、3、2、1 的顺序进栈,问下面哪一个不是合法的出栈序列?
- 5、4、3、6、1、2
- 4、5、3、2、1、6
- 3、4、6、5、2、1 ×
- 2、3、4、1、5、6
实现栈结构有两种比较常见的方式:
- 基于数组实现
- 基于链表实现
实现栈
- 创建一个 Stack,用户创建栈的类,可以顶一个泛型类
- 在构造函数中,定义了一个变量(数组类型),这个变量可以用于保存当前栈对象中所有的元素
- 之后不论是压栈操作还是出栈操作,都是从数组中添加和删除元素
class Stack<T> {
private data: T[] = []
}
在 node 环境下执行 ts 代码
$ npm i -g ts-node
栈的操作
- push(element):添加一个新元素到栈顶位置
- pop():移除栈顶的元素,同时返回被移除的元素
- peek():返回栈顶的元素,不会对栈做任何修改
- isEmpty():如果栈里面没有任何元素就返回 true,否则返回 false
- size():返回栈里的元素个数。这个方法和数组的 length 属性很类似
class ArrayStack {
private data: any[] = []
// push:将一个元素压入栈中
push(element: any) {
this.data.push(element)
}
// pop:将栈顶元素弹出栈(返回出去,并且从栈顶移除)
pop(): any {
return this.data.pop()
}
// peek:看一眼栈顶元素,但是不进行任何操作
peek(): any {
return this.data[this.data.length - 1]
}
// isEmpty:判断栈是否为空
isEmpty(): boolean {
return this.data.length === 0
}
// size:返回栈的数据个数
size(): number {
return this.data.length
}
}
const stack1 = new ArrayStack()
stack1.push('aaa')
stack1.push('bbb')
console.log(stack1.peek())
console.log(stack1.pop())
console.log(stack1.pop())
console.log(stack1.isEmpty())
console.log(stack1.size())
泛型重构栈
class ArrayStack<T> {
private data: T[] = []
push(element: T) {
this.data.push(element)
}
pop(): T | undefined {
return this.data.pop()
}
peek(): T | undefined {
return this.data[this.data.length - 1]
}
isEmpty(): boolean {
return this.data.length === 0
}
size(): number {
return this.data.length
}
}
接口抽离和封装
import { IStack } from './IStack'
class LinkedStack<T> implements IStack<T> {
private data: T[] = []
push(element: T) {
this.data.push(element)
}
pop() {
return this.data.pop()
}
peek() {
return this.data[this.data.length - 1]
}
isEmpty() {
return this.data.length === 0
}
size() {
return this.data.length
}
}
使用接口定义栈的结构
interface IStack<T> {
push(element: T): void
pop(): T | undefined
peek(): T | undefined
isEmpty(): boolean
size(): number
}
export { IStack }
十进制转二进制
为什么需要十进制转二进制
- 现实生活中,我们主要使用十进制
- 在计算机科学中,二进制非常重要,因为计算机里所有内容都是二进制数字表示的(0 和 1)
- 没有十进制和二进制相互转换的能力,与计算机交流就很困难
- 转换二进制是计算机科学和编程领域中经常使用的算法
如何实现十进制转二进制
- 要把十进制转换成二进制,我们可以将十进制数字和 2 整除(二进制是满二进一),直到结果是 0 为止
import ArrayStack from './stack_refactor'
function decimalToBinary(decimal: number): string {
// 1.创建一个栈,用于存放余数
const stack = new ArrayStack<number>()
// 2.使用循环 while(不确定次数,只知道循环结束条件) for(知道循环的次数)
while (decimal > 0) {
const result = decimal % 2
stack.push(result)
decimal = Math.floor(decimal / 2)
}
// 3.所有的余数都已经放在 stack 中,依次取出即可
let binary = ''
while (!stack.isEmpty()) {
binary += stack.pop()
}
return binary
}
有效括号
给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合
- 左括号必须以正确的顺序闭合
- 每个右括号都有一个对应的相同类型的左括号
import ArrayStack from './stack_refactor'
function isValid(s: string): boolean {
// 创建栈结构
const stack = new ArrayStack<string>()
// 2.遍历s中所有的括号
for (let i = 0; i < s.length; i++) {
const c = s[i]
switch (c) {
case '(':
stack.push(')')
break
case '{':
stack.push('}')
break
case '[':
stack.push(']')
break
default:
if (c !== stack.pop()) return false
break
}
}
return stack.isEmpty()
}