题目描述:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数(从1 到 n 中1出现的次数)。
【分析】
设定整数点1、10、100作为位置点i(对应n的个位、十位、百位),对n进行分割,分析每个位数上包含1数目。
根据设定的整数位置,分为两部分,高位n/i,低位n%i。
次数:(a+8)/10*i+(a%10==1)*(b+1)
当百位对应0或>=2时,有(a+8)/10次包含所有100个点,还有当百位为1(a%10==1),需要增加局部点b+1
之所以补8,是因为当百位为0,则a/10==(a+8)/10,当百位>=2,补8会产生进位位,效果等同于(a/10+1)
class Solution {
public:
int NumberOf1Between1AndN_Solution(int n)
{ // 统计次数
int count = 0;
for(int i=1;i<=n;i*=10){
// 计算高位和低位
int a = n/i;//用i对n进行分割,高位
int b = n%i;//低位
count+=(a+8)/10*i+(a%10==1)*(b+1);
}
return count;
}
};