题目描述:地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
【分析】
和上一道题十分相似,只不过这次的限制条件变成了坐标位数之和。对于求坐标位数之和,我们单独用一个函数实现,然后套入上一道题的代码中即可。
class Solution {
public:
int movingCount(int threshold, int rows, int cols)
{
if(threshold<=0 || rows<=0 || cols <=0)
return 0;
bool* flag = new bool[rows*cols]();//标志位,记录已走过的点,[ ]初始化指定长度
return Search4(threshold,rows,cols,0,0,flag);
}
int Search4(int threshold, int rows, int cols,int i, int j, bool* flag)
{
int index = i*cols+j;//根据i和j计算匹配的第一个元素,在一维数组的位置
if(i<0 || j<0 ||i>=rows || j>=cols || Sum(i)+Sum(j) > threshold || flag[index] == true)//递归终止条件
{
return 0;//出口
}
flag[index] = true;
/*回溯,递归寻找,找不到,还原,*/
return 1+Search4(threshold,rows,cols,i-1,j,flag)
+Search4(threshold,rows,cols,i,j-1,flag)
+Search4(threshold,rows,cols,i+1,j,flag)
+Search4(threshold,rows,cols,i,j+1,flag);
}
int Sum(int i)
{
return (i%10+i/10);//求每个位数之和
}
};