机器学习
yleavesw
这个作者很懒,什么都没留下…
展开
-
余弦相似度
余弦相似度用向量空间中两个向量夹角的余弦值来衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。余弦相似度推导公式如下:Ref:https://www.cnblogs.com/dsgcBlogs/p/8619566.html...原创 2020-01-23 14:35:31 · 726 阅读 · 0 评论 -
机器学习杂记
文章目录能量函数(energy function)能量函数(energy function)1.物理解释:大自然的规律,能量越小越稳定,因此自然的变化都是朝着能量小的方向进行的。2.由于1的解释,所以我们有了一个求极小值的科学根据,我们所求的能量函数以及能量最小其实就是一个逼近,逼得越近那么我们的方差也就越小,这里也就可以说我们用了最小二乘法。(最小二乘就是求两个点的差,然后平方...原创 2019-12-24 23:40:42 · 621 阅读 · 0 评论 -
局部响应归一化LRN(Local Response Normalization)
LRN一般是在激活、池化后进行的一中处理方法。其主要思想是:对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。更加详细可看:https://blog.csdn.net/hduxiejun/article/details/70570086在 AlexNet 的论文中有提到 LRN:其中,a 表示卷积层(包括卷积操作和池...原创 2019-12-16 12:53:07 · 367 阅读 · 1 评论 -
机器学习学习资料
机器学习资料:书籍,资源,方法机器学习经典书籍:http://www.cnblogs.com/xmphoenix/p/...转载 2019-07-16 20:49:22 · 212 阅读 · 0 评论 -
机器学习入门书籍、课程推荐
MOOCsCoursera 上 Andrew Ng 的 Machine Learning 课程:适合 Machine Learning 的入门,我当时是研一的上学期听的这个课,学校的课还比较多,那时是完全按照他的课程日历来学的,每周都有Deadline,一共学习了3个月,就是通过这个课对机器学习有了一个整体的理解,学习课程的时候一定要记得做Assignment,非常有帮助。研一下学期听了师兄...转载 2019-07-16 20:52:10 · 955 阅读 · 0 评论 -
深度学习系列学习博客
零基础入门深度学习(1) - 感知器零基础入门深度学习(2) - 线性单元和梯度下降零基础入门深度学习(3) - 神经网络和反向传播算法零基础入门深度学习(4) - 卷积神经网络零基础入门深度学习(5) - 循环神经网络原文:https://blog.csdn.net/XiaoXIANGZI222/article/details/53897760...转载 2019-07-20 16:22:09 · 181 阅读 · 0 评论 -
均方误差(MSE)
均方误差单独扽概念是很简单的,这里只做介绍,更深一步的内容会在后面列出来。SSE(和方差、误差平方和):The sum of squares due to errorMSE(均方差、方差):Mean squared errorRMSE(均方根、标准差):Root mean squared error数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“...转载 2019-08-18 13:51:30 · 186900 阅读 · 11 评论