毕业设计 基于 transformer+lstm神经网络 用电器功率预测

这篇博客介绍了如何使用Transformer和LSTM神经网络模型预测用电器功率。作者提供了数据介绍,任务描述,并分享了代码实现,包括数据集划分和模型应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据介绍:

原始数据:用电器的功率检测数据泊尔尕恐怕可歌可泣-Dell文档类资源-CSDN下载

时间戳 总功率 用电器1 用电器3 用电器7 其他功率

任务描述:

用 时间戳 、总功率、其他功率预测用电器1、用电器3、 用电器7 的功率 

一共是30天的数据,前30天作为训练,最后一天作测试。输入 时间戳 、总功率、其他功率

预测用电器1、用电器3、 用电器7 的功率 。

代码:

import json
import numpy as np
import pandas as pd
from tqdm import tqdm
import re
import gensim
from sklearn import preprocessing
import jieba
import random
import torch
from torch import nn
import torch.utils.data as data
import torch.nn.
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值