基于STM主题模型的主题提取分析-完整代码数据

直接看结果:

代码:

import re
from collections import defaultdict
import random
import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
import numpy as np
import re
from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import matplotlib.pyplot as plt
import seaborn as sns
def STM(text):

    cleaned_text = re.sub(r'\W+', ' ', text)
    cleaned_text = re.sub(r'\d+', '&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值