svm小样本模式

SVM三大特性:小样本,非线性,高维模式

非线性我们知道,SVM通过核函数与松弛变量实现;高维模式可通过仅用支持向量计算来实现(KNN不可);

小样本:不带核函数的支持向量机(线性)在一定条件下是适合大量数据的,但是带核函数的支持向量机(非线性)在处理大量数据的时候会非常慢,并不适合。下面根据特征维数和样本数对模型与SVM的核函数进行选择时体现了这一点:

  • n 为特征数,m 为训练样本数。
  • 如果相较于 m 而言,n 要大许多,即训练集数据量不够支持我们训练一个复杂的非线性模型(会导致high variance),我们选用逻辑回归模型或者不带核函数的支持向量机。
  • 如果 n 较小,而且 m 大小中等,例如 n 在 1-1000 之间,而 m 在 10-10000 之间,使用高斯核函数的支持向量机。(效果拔群,远胜逻辑回归模型或者不带核函数的支持向量机)
  • 如果 n 较小,而 m 较大,例如 n 在 1-1000 之间,而 m 大于 50000,则使用支持向量机会非常慢,解决方案是创造、增加更多的特征(否则会导致high bias),然后使用逻辑回归或不带核函数的支持向量机。

从另外一个角度解释,当数据量极大时,通常以线性等简单的形式就可以获取意想不到的效果,使用SVM进行非线性映射计算量过于复杂。就好比天池这类比赛rule-base走天下一样的道理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值