一、题目描述
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:
如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
二、题解
双优先级队列:
存较小数据的大顶堆,
存较大数据的小顶堆
class MedianFinder {
public:
priority_queue<int,vector<int>,less<int> > lo;
priority_queue<int,vector<int>,greater<int> > hi;
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
lo.push(num);
hi.push(lo.top());
lo.pop();
if(lo.size()<hi.size()){
lo.push(hi.top());
hi.pop();
}
}
double findMedian() {
return lo.size()>hi.size()?lo.top():((double)lo.top()+(double)hi.top())/2.0;
}
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/