766. 托普利茨矩阵

一、题目描述

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例 1:
输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:
输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 “[1, 2]” 上的元素不同。

二、难度:中等
三、题解

class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        for(int i=1;i<m;i++){
            for(int j = 1;j<n;j++){
                if(matrix[i][j]!=matrix[i-1][j-1])
                    return false;
            }
        }
        return true;
    }
};

在这里插入图片描述
进阶问题
对于进阶问题一,一次最多只能将矩阵的一行加载到内存中,我们将每一行复制到一个连续数组中,随后在读取下一行时,就与内存中此前保存的数组进行比较。

对于进阶问题二,一次只能将不完整的一行加载到内存中,我们将整个矩阵竖直切分成若干子矩阵,并保证两个相邻的矩阵至少有一列或一行是重合的,然后判断每个子矩阵是否符合要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值