判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。
上图是一个部分填充的有效的数独。
数独部分空格内已填入了数字,空白格用 '.'
表示。
解题思路
和N皇后有异曲同工之妙。列、行、3X3矩阵都只能有1~9.主要找出3X3矩阵里面的表示方法。
观察行号规律:
第0个九宫格:000111222; 第1个九宫格:000111222; 第2个九宫格:000111222;
第3个九宫格:333444555; 第4个九宫格:333444555; 第5个九宫格:333444555;
第6个九宫格:666777888; 第7个九宫格:666777888; 第8个九宫格:666777888;
可见对于每三个九宫格行号增3;对于单个九宫格,每三个格点行号增1。
因此第i个九宫格的第j个格点的行号可表示为i/3*3+j/3
观察列号规律:
第0个九宫格:012012012; 第1个九宫格:345345345; 第2个九宫格:678678678;
第3个九宫格:012012012; 第4个九宫格:345345345; 第5个九宫格:678678678;
第6个九宫格:012012012; 第7个九宫格:345345345; 第8个九宫格:678678678;
可见对于下个九宫格列号增3,循环周期为3;对于单个九宫格,每个格点行号增1,周期也为3。
周期的数学表示就是取模运算mod。
因此第i个九宫格的第j个格点的列号可表示为i%3*3+j%3
class Solution {
public boolean isValidSudoku(char[][] board) {
for (int i = 0; i < 9; i++) {
//使用set来保存数字,来判断1~9有没有重复,set.add(new),如果set本身存在new,那么返回false
HashSet<Character> row = new HashSet<>();
HashSet<Character> column = new HashSet<>();
HashSet<Character> cube = new HashSet<>();
for (int j = 0; j < 9; j++) {
// 检查第i行,在横坐标位置
if (board[i][j] != '.' && !row.add(board[i][j]))
return false;
// 检查第i列,在纵坐标位置
if (board[j][i] != '.' && !column.add(board[j][i]))
return false;
// 行号+偏移量
int RowIndex = 3 * (i / 3) + j / 3;
// 列号+偏移量
int ColIndex = 3 * (i % 3) + j % 3;
//每个小九宫格,总共9个
if (board[RowIndex][ColIndex] != '.'
&& !cube.add(board[RowIndex][ColIndex]))
return false;
}
}
return true;
}
}