智力题记录

题目

100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格, 那么,在这100人中,至少有多少人及格

网上普遍的解答是

每道题的答错人数分别为:26,21,19,15,9,则答错3道题的最多人数为:(26+21+19+15+9)/3=30,答错2道题的最多人数为:(21+19+15+9)/2=32,答错1道题的最多人数为:(19+15+9)/1=43,因此最小值为30,则至多有30人不及格,则至少有70人及格

我的观点

一个逻辑就能打死,比如我算出来答错3题的最多人数为  (0+0+0+0+100)/3=33,大意就是第五题大家全错,然后算出来至少33个人不及格,是不是有问题?实际上及格率100%,大家都把前四题做出来了,都满足至少做出三题及格了。

有些人可能会觉得我的例子太极端了,那改成 (1+1+1+1+100)/3>33,也是一样不合理的

所以我认为这个置顶的解答的思想是比较好的(但我改了一下

难题求解!!!100个人回答五道试题,有81人答对第一题,91人 爱问知识人

就是我们先把做错题目最少的拿出来,从少到多排序,就是第2题,第3题,第1题位列错题最少数前三,一会我们就拿他们去计算

我们先计算同时做对第2和第3题最少人数。由之前计算可知,第2题9人做错,第3题15人做错。做错第2题的人,假设第3题做对;然后做错第3题的人,假设做第2题做对,这样能使得同时做对第2题和第3题的人数最少化(不能出现同时做错第2、3题的人,这样会浪费人数,不能使得同时做对2、3题的人最小化)

我们求得同时做对第2和第3题最少人数为: 100-(9+15) = 66,括号里是做错第2题和第3题的人数

同理,这66人中,我们计算错第1题的人数,为了使得同时做对第1、2、3题的人尽可能少,我们使得做错第1题的人,第2、3题都是做对的,这样可以直接计算 66-19=47,19是做错第1题的人数

我们得到最终结论,及格的人至少有 47 人,也就是同时做对1、2、3题的人

最后这个结论,只能说没办法,做对1、2、3题的人太多了,所以最后至少及格的人也多

后记

后记1

其实我们还可以求得同时做对 1、3、4 题的最少人数,或者计算同时做对2、3、4题的最少人数,排列组合所有的情况(1、2、3、4、5中任意三个数组合),然后在所有的组合之中,取最大值比较,但结论还是1、2、3计算的结果最优

后记2

因为我们没有考虑到除了1、2、3题外其他题目的影响,所以最终结果是及格人数>=47

回到我最开始提出的变种题目,假设计算出错题数是 1、1、1、1、100(这个顺序恰好为第1、2、3、4、5题),按照我的计算办法,结果应该是 100 - (1+1+1) = 97,然而我们直接看题目会发现,至少98个人及格了(极限情况下,做错不及格的两个人分别做错第1、4、5题和2、3、5题),97其实无限接近于98这个正确答案了,由于我们没有考虑其他题目的影响,所以97是一个接近值

假设出错题数是 1、1、1、3、3,这个时候,算出来97就是对的,极限情况下三个人做错了3题(因为只有同时做错3题才会不及格),不及格的三个人分别做错第1、4、5题,第2、4、5题,第3、4、5题,刚好用完所有的错题,使得及格人数最少化

就算错题数是1、1、1、99、99,也不影响97这个结果,就怕第4、5题错的少,不怕错的多,错的多97就是极限值,错的少可能还需要再看看。

第4、5题错题至少要大于等于第1、第2、第3题之和才行,也就是大于等于(1+1+1)=3,97才有效

如果第4、5题小于第1、第2、第3题之和,其实应该也能算,但我这里就不研究了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值