Few-shot learning
小样本学习,简单理解就是利用小数量的训练样本便可以达到高准确率的检测结果,相较而言以前的深度学习模型,无论是监督学习还是无监督学习,都需要大量的正负样本作训练集。下图展示了Few-shot learning完整过程所需的数据,包括Training Set、Support Set和Query。Training Set指训练集,这里的训练集与传统深度学习模型使用的训练集并无差别,只是数据量可以相对少一些;Support Set指支撑集,支撑集的类别与训练集的类别不一样,同时每个类别提供的样本数量可以很少,甚至等于1(如图),这便是小样本学习名称的由来;Query指查询条件(即需要分类的输入数据),支撑集和查询条件同时作为测试过程的输入,模型通过比较查询条件和支撑集便可以进行分类。
举个例子,训练集有Husky、Elephant、Tiger、Macaw和Car五种类别,支撑集有Fox、Squirrel、Rabbit、Hamster、Otter和Beaver六种类别,训练集和支撑集的类别完全不一样,注意,训练后的模型只能区分支撑集里的类别,因为该模型学习的是如何区分两个图片中的物体(即比较相似度)。接着进入测试过程,我们提供Query条件,比如是一张兔子的图片,此时模型会比较Query的图片与支撑集每个类别的图片并得到各自的相似度,最终相似度最大的即为正确类别。