PCA在处理高维或低维图片样本中的应用

PCA在处理1024*1024电池片图像中用于降维,980张训练样本和2张测试样本展示其在高维数据的有效性。通过降维矩阵Uk,将n个特征降到k个,实现内存优化,测试样本乘以Uk得到1*k特征向量Z。降维过程中遇到样本数与特征数的关系问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    看了好多关于PCA的博客以及几篇论文,终于对主成分分析有了一定的了解。PCA在人脸识别中的应用十分广泛,不管人脸图片是32*32的还是64*64的,这在我看来都是低维图片,如果把单个像素看成一个特征的话,32*32的有1024个特征,64*64的有4096个特征,这些特征数对于电脑来说并不算太大。本文中的图片是1024*1024的,单张图片有1048576个特征,这是很有降维的必要的,如果不降维的话,若是对大量的图片做聚类的话,电脑根本就没有那莫大的内存。

    我用PCA处理980张1024*1024的电池片图像,这980张电池片作为训练样本,还有两张作为测试样本(测试很有必要,否则不知道你得到的用于降维的矩阵Uk是否正确。) 我们假设有m个样本,每个样本有n个特征,将这n个特征降到了k个(k<n)。降维矩阵为Uk(n行k列),我们用1*n的一个测试样本乘Uk,就得到了一个1*k的特征向量Z。


    首先解释一下我遇到的几个问题:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打水的杯子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值