看了好多关于PCA的博客以及几篇论文,终于对主成分分析有了一定的了解。PCA在人脸识别中的应用十分广泛,不管人脸图片是32*32的还是64*64的,这在我看来都是低维图片,如果把单个像素看成一个特征的话,32*32的有1024个特征,64*64的有4096个特征,这些特征数对于电脑来说并不算太大。本文中的图片是1024*1024的,单张图片有1048576个特征,这是很有降维的必要的,如果不降维的话,若是对大量的图片做聚类的话,电脑根本就没有那莫大的内存。
我用PCA处理980张1024*1024的电池片图像,这980张电池片作为训练样本,还有两张作为测试样本(测试很有必要,否则不知道你得到的用于降维的矩阵Uk是否正确。) 我们假设有m个样本,每个样本有n个特征,将这n个特征降到了k个(k<n)。降维矩阵为Uk(n行k列),我们用1*n的一个测试样本乘Uk,就得到了一个1*k的特征向量Z。
首先解释一下我遇到的几个问题: