2.矩阵乘法

1矩阵

通常矩阵在数学上的定义比较简单:

一個m×n矩陣是一个由mn列元素排列成的矩形阵列。矩陣里的元素可以是数字符号或数学式。

当行列数相等时称为 Square matrix (方阵),下边是一些矩阵(3x4  3x3  mxn):

  

2 矩阵加法

1)  相加的矩阵行列数都要相同。否则没有意义

2)   结果返回一个相同行列数的一个矩阵。

      其每个元素的值为相加的矩阵对应元素的和下边是一个例子:


3 矩阵数乘

用一个数乘一个矩阵相当于用这个数乘矩阵的每一个元素:


4矩阵乘法

设T是mxn的矩阵S是lxm的矩阵则乘积ST是lxn的矩阵。

其(k,j) 元是S的第k行与K的第j列对应元素的乘积之和。

其中T的行数要等于S的列数这样ST 才有意义。即:


下面是一个例子:


5对于矩阵乘法补充两点说明:

1) 之所以要以这种看起来比较复杂的方式定义矩阵的乘法。是因为这种方式

定义的矩阵乘法可以处理很多问题。如线性变换的复合。方程组的求解等等。这些概念以后都会详细介绍。

2) 矩阵乘法也可以用另一种等价的方式来定义 : 列向量的线性组合(以后会说明)



转:https://blog.csdn.net/mathmetics/article/details/9253477


阅读更多
个人分类: 线性代数基础
想对作者说点什么? 我来说一句

乘法矩阵与动态规划应用

2010年07月27日 227KB 下载

C++矩阵乘法C++矩阵乘法

2011年05月20日 1KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭